Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ARPA-E awards IIT-Argonne team $3.4 M for breakthrough battery technology May more than double the range of electric vehicles, simplify refueling

Researchers (pictured left to right) Dileep Singh, Carlo Segre, Mike Duoba, John Katsoudas, Elena Timofeeva, and Chris Pelliccione stand by one of the plug-in electric vehicles they hope to revolutionize with the IIT-Argonne “nanoelectrofuel” flow battery technology they are developing.
Researchers (pictured left to right) Dileep Singh, Carlo Segre, Mike Duoba, John Katsoudas, Elena Timofeeva, and Chris Pelliccione stand by one of the plug-in electric vehicles they hope to revolutionize with the IIT-Argonne “nanoelectrofuel” flow battery technology they are developing.

Abstract:
Carlo Segre, Duchossois Leadership Professor of Physics at Illinois Institute of Technology, has received a $3.4 million award from the U.S. Department of Energy's Advanced Research Projects Agency (ARPA-E) to develop a breakthrough battery technology that may more than double the current range of electric vehicles (EV), increase safety, reduce costs and simplify recharging.

ARPA-E awards IIT-Argonne team $3.4 M for breakthrough battery technology May more than double the range of electric vehicles, simplify refueling

Chicago, IL | Posted on September 4th, 2013

Segre and his collaborators John Katsoudas, also of IIT, and Elena Timofeeva, Dileep Singh and Michael Duoba of Argonne National Laboratory will develop a prototype for a rechargeable "nanoelectrofuel" flow battery that may extend the range of EVs to at least 500 miles and provide a straightforward and rapid method of refueling. Current EV ranges are 100-200 miles, with recharging taking up to eight hours.

Flow batteries, which store chemical energy in external tanks instead of within the battery container, are generally low in energy density and therefore not used for transportation applications. The IIT-Argonne nanoelectrofuel flow battery concept will use a high-energy density "liquid" with battery-active nanoparticles to dramatically increase energy density while ensuring stability and low-resistance flow within the battery.

"I am delighted by this award, not only because of the quality and importance of the proposed research but also as another example of the longstanding and effective collaboration between IIT and the world-class researchers and facilities at Argonne," said Russell Betts, dean of the College of Science at IIT.

Segre's expertise is in the structure and properties of materials using synchrotron radiation techniques. He has a wide variety of ongoing research projects, including fuel-cell catalysts and battery materials. Segre is deputy director of the Materials Research Collaborative Access Team (MR-CAT) beamline at the Advanced Photon Source (APS), located at Argonne; and director of the Center for Synchrotron Radiation Research and Instrumentation (CSRRI) at IIT.

Katsoudas and Timofeeva began their work on the IIT-Argonne nanoelectrofuel flow battery at Argonne, leveraging Timofeeva's expertise in nanofluids engineering and electrochemistry. Katsoudas is an expert in instrumentation design, automation of experiments and materials characterization.

Singh will bring to bear on the project his knowledge of how nanoparticle-fluid interaction effects the thermal management and behavior of nanoparticles in the IIT-Argonne nanoelectrofuel flow battery. Duoba's expertise in vehicle systems and EV testing, in particular, will provide critical guidance in the development of a nanoelectrofuel battery prototype for EV applications.

The IIT award is one of 22 projects across the country awarded a total of $36 million through the DOE's Advanced Research Projects Agency-Energy Robust Affordable Next Generation EV Storage (RANGE) program, which seeks to develop innovative EV battery chemistries, architectures and designs. ARPA-E was officially authorized in 2007 and first funded in 2009. The agency invests in high-potential, high-impact energy technologies that are too early for private sector investment.

IIT and Argonne will share the funding award to continue their research.

####

About Illinois Institute of Technology
Founded in 1890, IIT is a Ph.D.-granting university offering degrees in engineering, sciences, architecture, psychology, design, humanities, business, and law. IIT's interprofessional, technology-focused curriculum is designed to advance knowledge through research and scholarship, to cultivate invention improving the human condition, and to prepare students from throughout the world for a life of professional achievement, service to society, and individual fulfillment. Visit www.iit.edu.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Patricia Cronin
Illinois Institute of Technology
(312)567-3132


Angela Hardin
Argonne National Laboratory
(630) 252-5501

Copyright © Illinois Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project