Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > EU and Russian scientists join efforts in development new nanomaterials for medical implants

Schema of crystal plasticity model of nanotitaniumIMDEA Spain
Schema of crystal plasticity model of nanotitanium

IMDEA Spain

Abstract:
With the ageing of European population, more and more people find themselves in need of dental or bone implants, which should help them to continue normal life even after mechanical damage or medical operations.

EU and Russian scientists join efforts in development new nanomaterials for medical implants

Copenhagen, Denmark | Posted on August 27th, 2013

The implants should remain functional over dozens of years without any deformation, and also without producing any toxic substances in the body. Titanium is a rather strong material, with high biocompatibility, and is therefore one of the most promising materials for medical implants in trauma surgery, orthopedic and oral medicine.

However, dental and bone implant are subject to the very high loads. That is why even higher strength and damage resistances that those of common titanium are required to ensure the necessary service properties.

The very promising way to improve the implant materials and to ensure the required properties lies in nanotechnology. Applying the severe plastic deformation to metals, one can obtain new materials with very small grains (so-called ultrafine grained metals), which have also superior properties. These nanostructured materials are stronger and also more durable than common metals, and thus, they can serve best as materials for implant applications.

In order to develop nanostructured materials for medical implants, which correspond exactly to the service requirements, scientists and developers widely use computational models.
To develop the models and software for computational development of materials for implants, several group of European and Russian scientists joined their efforts in two coordinated projects, funded by European Commission (Framework 7 Program) and Russian Ministry of Education and Science. The research project "Virtual Nanotitanium", coordinated by the Technical University of Denmark, has been started in 2011. Research groups from Denmark, Belgium, Germany, Spain, Czech Republic and Israel as well as 6 groups from Russia participate in the project, covering different aspects of the development and computational modeling of nanomaterials.

During the project, several new technologies, computational models and implant prototypes have been developed.

A software complex for multiscale virtual testing of nanotitanium for the strength, usability in biomaterials and lack of toxic materials has been developed. This software can be then used by companies developing the new implants and materials, to optimize the materials and technologies.

A novel processing route for fabrication of nano-titanium, based on high temperature ECAP-C (equal-channel angular pressing) processing and drawing, was developed by Russian partner, Ufa State Aviation Technical University.

A further practical result is the development, fabrication and testing of new nanotitanium based implants with lower diameter, which can withstand loads similar to those carried by implants of conventional design with a 50% larger diameter made from coarse-grained Ti. The implant is made from pure Ti, and doesn't contain any toxic alloying elements or allergens. The prototype was developed by the Czech project partner, small company Timplant.

In the framework of the project, a special issue of the international journal "Computational Materials Science" was published, and an International Conference on Computational Modelling of Nanostructured Materials is organized in Frankfurt am Main, Germany.

Dr. Leon Mishnaevsky Jr, Senior Researcher at Technical University of Denmark and Coordinator of the EU project,. noted that the application of developed computational models would allow efficient, reliable and quick development of nanomaterials for medical implants, thus, minimizing the necessity in animal tests. Further, the developed tools and technologies will open new possibilities in trauma surgery, orthopedic and oral medicine, allowing to heal bone illnesses, dental problems, and traumas at a new level.

The coordinator of the Russian project, Professor Evgeny Levashov (National University of Science and Technology "MISIS", Moscow) underlined that this work is a very positive example of collaboration between European and Russian research teams, leading to the excellent new results.
The Technical Advisor of the project, Professor Eberhard Seitz (Clausthal University of Technology, Germany) noticed that the main results of this project, the software for the optimization of nanomaterials for implants and the small radius implant, will surely attract interest of industries.

The project participants agreed to sign the memorandum of understanding lying ground for future collaboration and project continuation. In the Memorandum, the partners "agree agree to continue scientific, technical and practical collaboration in the area of the project" and related areas, among them, other nanostructured materials, their computational modeling and virtual testing of nanostructured materials.

####

For more information, please click here

Contacts:
Dr. habil. Leon Mishnaevsky Jr.
Senior Scientist
Coordinator of EU FP7 project "Virtual Nanotitanium"
Technical University of Denmark
Department of Wind Energy
Risø Campus, Frederiksborgvej 399
DK-4000 Roskilde, Denmark

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Project webpage at DTU:

Project webpage at European Commission:

International Conference on Computational Modelling of Nanomaterials, Frankfurt, 3.-6.9.2013:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Dental

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project