Home > Press > First time: NJIT researchers examine dynamics of liquid metal particles at nanoscale
![]() |
Two NJIT researchers, Shahriar Afkhami (left) and Lou Kondic (right), have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale.
Credit: NJIT |
Abstract:
Two NJIT researchers have demonstrated that using a continuum-based approach, they can explain the dynamics of liquid metal particles on a substrate of a nanoscale. "Numerical simulation of ejected molten metal nanoparticles liquified by laser irradiation: Interplay of geometry and dewetting," appeared in Physical Review Letters (July 16, 2013).
The evolution of fluid drops deposited on solid substrates has been a focus of large research effort for decades, said co-author Shahriar Afkhami, an assistant professor in the NJIT Department of Mathematical Sciences. This effort has become particularly extensive on the nanoscale, due to the relevance of nanostructures in a variety of fields, ranging from DNA sequencing to plasmonics and nano magnetism. And the research also applies to liquid crystal displays and solar panel designs."
In this work, Afkhami with NJIT Professor Lou Kondic, also in the Department of Mathematical Sciences, studied the liquid metal nanostructures placed on solid substrates. The study is of direct relevance to self- and directed-assembly of metal nanoparticles on surfaces. For example, the size and distribution of metallic particles strongly affects the yield of solar cell devices, Afkhami said.
In this work, however, the researchers demonstrate that using a continuum-based approach is appropriate on the nanoscale, where the basic assumptions of continuum fluid mechanics are pushed to the limits. The pair's research is the first attempt to utilize state-of-the-art simulations based on continuum fluid mechanics to explain the dynamics of liquid metal particles on a substrate on the nanoscale.
"We demonstrated that continuum simulations provide a good qualitative agreement with atomistic simulations on the length scales in the range of 1-10 nm and with the physical experiments length scales measured in the range of 100 nanometers," added Kondic.
Kondic is involved in the mathematical modeling and simulating of granular materials, as well as in development of numerical methods for highly nonlinear partial differential equations related to the flows of thin liquid films. In 2005, Kondic received a Fulbright Foundation grant and traveled to Argentina to study the dynamics of non-Newtonian liquid films involving contact lines. He currently leads four federally funded projects totaling more than $800,000.
Afkhami uses computational and mathematical modeling to help researchers better understand a range of real-life engineering phenomena. His work includes examining biomedical systems, polymers and plastics, microfluidics and nano-materials. His research looks for the existence of solutions and issues involving fluid flows from stability to asymptotic behavior.
Afkhami's current research project is to numerically discover a better way to understand the dynamics of mixtures of fluids. The effort will tie into his new three-year NSF $252,000 grant (2013-16) to develop a state-of-the-art computational framework for polymeric liquids. The fruits of this labor will eventually have a broad effect in complex applications, such as how blood and other bodily fluids flow in microfluidic devices as well as finding better ways to improve the flow of emulsions when blending or processing polymers.
####
About New Jersey Institute of Technology
NJIT, New Jersey's science and technology university, enrolls more than 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2012 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.
For more information, please click here
Contacts:
Sheryl Weinstein
973-596-3436
Copyright © New Jersey Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |