Home > Press > Gold 'nanoprobes' hold the key to treating killer diseases
This image shows Dr. Sumeet Mahajan at work in the lab.
Credit: The University of Southampton |
Abstract:
Researchers at the University of Southampton, in collaboration with colleagues at the University of Cambridge, have developed a technique to help treat fatal diseases more effectively. Dr Sumeet Mahajan and his group at the Institute for Life Sciences at Southampton are using gold nanoprobes to identify different types of cells, so that they can use the right ones in stem cell therapies.
Stem cell therapy is in its infancy, but has the potential to change the way we treat cancer and other life-threatening diseases, by replacing damaged or diseased cells with healthy ones. One of the key limitations of stem cell therapy is identifying the right cells to use for different therapies. This fundamental problem with the treatment is being tackled by this new research.
Dr Mahajan, Senior Chemistry Lecturer in Life Science Interface, says: "Stem cells could hold the key to tackling many diseases. They develop into all the various kinds of cells needed in the body - blood, nerves and organs - but it is almost impossible to tell them apart during their initial development without complex techniques, even with the most advanced microscopes. Up to now, scientists have used intrusive fluorescent markers to tag molecules and track each cell, a process which can render them useless for therapeutic purposes anyway. By using a technique discovered at Southampton in the 1970s, known as Surface Enhanced Raman Spectroscopy (SERS), we have been able to look at adult stem cells on a molecular scale to distinguish one from another, meaning we can still use the cells for therapeutic purposes."
The team who discovered SERS in the 1970s found that by roughening a metal surface upon which they had placed molecules to be examined, they could increase the signal by which they could detect these molecules, by a million times. This allowed them to detect molecules in far smaller quantities than ever before. SERS has been used in many different capacities around the world and across industries, but this new research marks the first time it has been used in the field of cell therapeutics. Dr Mahajan's research could mean that stem cell and other cell-based therapies could be advanced much further than the current most common uses, such as bone marrow transplants.
Dr Mahajan comments: "Scientists studying neurodegenerative diseases such as Parkinson's disease believe replenishing a patient's depleted dopamine-generating cells, may be an effective treatment. However, in order to avoid fatal complications, we must be sure we are using the right type of replacement cells, which the work we are doing at Southampton is enabling us to do. In addition, the technique can also allow us to see if drugs are working effectively in cells, and can also be used to diagnose diseases as well as treat them."
The results of Dr Mahajan's work, funded by the Engineering and Physical Sciences Research Council (EPSRC), have been published in the influential journal Nano Letters. He is collaborating with major pharmaceutical companies to further develop more effective drugs using this technique.
####
About University of Southampton
The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.
With over 23,000 students, around 5000 staff, and an annual turnover well in excess of £435 million, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning.
The University is also home to a number of world-leading research centres including the Institute of Sound and Vibration Research, the Optoelectronics Research Centre, the Institute for Life Sciences, the Web Science Trust and Doctoral training Centre, the Centre for the Developmental Origins of Health and Disease, the Southampton Statistical Sciences Research Institute and is a partner of the National Oceanography Centre at the Southampton waterfront campus.
About Engineering and Physical Sciences Research Council (EPSRC)
The Engineering and Physical Sciences Research Council (EPSRC) which is funding Dr Mahajan's research project, is the UK's main agency for funding research in engineering and the physical sciences. EPSRC invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change.
For more information, please click here
Contacts:
Charlotte Woods
Media Relations
University of Southampton
Tel 023 8059 2128 or 07891210483
Follow us on Twitter: http://twitter.com/unisouthampton
Like us on Facebook: http://www.facebook.com/unisouthampton
Copyright © University of Southampton
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
The full paper can be found at this link:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||