Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Improving Heat Removal Qualities of Graphene: Three Bourns College of Engineering professors will share a $360,000 grant from the National Science Foundation

From left, Alexander A. Balandin, Roger Lake and Ashok Mulchandani
From left, Alexander A. Balandin, Roger Lake and Ashok Mulchandani

Abstract:
Three Bourns College of Engineering professors at the University of California, Riverside have received a three-year, $360,000 grant from the National Science Foundation to further study the thermal properties of graphene, which is expected to lead to new approaches for the removal of heat from advanced electronic and optoelectronic devices.

Improving Heat Removal Qualities of Graphene: Three Bourns College of Engineering professors will share a $360,000 grant from the National Science Foundation

Riverside, CA | Posted on August 1st, 2013

Alexander A. Balandin, a professor of electrical engineering and founding chair of the materials science and engineering program, Roger Lake, a professor of electrical engineering, Ashok Mulchandani, a professor of chemical engineering, will be cooperating on the project called: "Two-dimensional performance with three-dimensional capacity: Engineering the thermal properties of graphene."

Balandin will serve as principal investigator and be responsible for materials characterization and thermal measurements. Lake will perform theoretical and computational studies while Mulchandani will conduct material synthesis and characterization.

The unique properties of graphene - a single atomic plane of carbon atoms - were discovered in Balandin's Nano-Device Laboratory at UC Riverside in 2008. In recent years, the attention of the research community was focused on the properties of twisted bilayer graphene - a special form of graphene bilayers where atomic planes are rotated against each other by some angle.

The objective of this grant is to investigate the effect of rotation angle on the thermal conductivity of twisted bilayer graphene. The UCR team will study the possibility of suppressing the phonon coupling in twisted graphene layers, allowing for the transfer of extraordinary large heat fluxes. The phonons are quanta of crystal lattice vibrations that carry heat in graphene.

The possibility of maintaining two-dimensional properties of graphene in bulk materials through the use of twisting the stacking angles is a transformational concept giving us the best of both worlds - the enhanced performance of two-dimensional combined with the capacity of three-dimensional systems.

####

For more information, please click here

Contacts:
Sean Nealon
Tel: (951) 827-1287

Twitter: seannealon

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project