Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new way to trap light: MIT researchers discover a new phenomenon that could lead to new types of lasers and sensors

Light is found to be confined within a planar slab with periodic array of holes, although the light is theoretically "allowed" to escape. Blue and red colors indicate surfaces of equal electric field.
Image: Chia Wei Hsu
Light is found to be confined within a planar slab with periodic array of holes, although the light is theoretically "allowed" to escape. Blue and red colors indicate surfaces of equal electric field.

Image: Chia Wei Hsu

Abstract:
There are several ways to "trap" a beam of light — usually with mirrors, other reflective surfaces, or high-tech materials such as photonic crystals. But now researchers at MIT have discovered a new method to trap light that could find a wide variety of applications.

A new way to trap light: MIT researchers discover a new phenomenon that could lead to new types of lasers and sensors

Cambridge, MA | Posted on July 10th, 2013

The new system, devised through computer modeling and then demonstrated experimentally, pits light waves against light waves: It sets up two waves that have the same wavelength, but exactly opposite phases — where one wave has a peak, the other has a trough — so that the waves cancel each other out. Meanwhile, light of other wavelengths (or colors) can pass through freely.

The researchers say that this phenomenon could apply to any type of wave: sound waves, radio waves, electrons (whose behavior can be described by wave equations), and even waves in water.

The discovery is reported this week in the journal Nature by professors of physics Marin Soljačić and John Joannopoulos, associate professor of applied mathematics Steven Johnson, and graduate students Chia Wei Hsu, Bo Zhen, Jeongwon Lee and Song-Liang Chua.

"For many optical devices you want to build," Soljačić says — including lasers, solar cells and fiber optics — "you need a way to confine light." This has most often been accomplished using mirrors of various kinds, including both traditional mirrors and more advanced dielectric mirrors, as well as exotic photonic crystals and devices that rely on a phenomenon called Anderson localization. In all of these cases, light's passage is blocked: In physics terminology, there are no "permitted" states for the light to continue on its path, so it is forced into a reflection.

In the new system, however, that is not the case. Instead, light of a particular wavelength is blocked by destructive interference from other waves that are precisely out of phase. "It's a very different way of confining light," Soljačić says.

While there may ultimately be practical applications, at this point the team is focused on its discovery of a new, unexpected phenomenon. "New physical phenomena often enable new applications," Hsu says. Possible applications, he suggests, could include large-area lasers and chemical or biological sensors.

The researchers first saw the possibility of this phenomenon through numerical simulations; the prediction was then verified experimentally.

In mathematical terms, the new phenomenon — where one frequency of light is trapped while other nearby frequencies are not — is an example of an "embedded eigenvalue." This had been described as a theoretical possibility by the mathematician and computational pioneer John von Neumann in 1929. While physicists have since been interested in the possibility of such an effect, nobody had previously seen this phenomenon in practice, except for special cases involving symmetry.

Written by David Chandler, MIT News Office

####

For more information, please click here

Contacts:
Sarah McDonnell

671-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project