Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Build 3-D Structures Out of Liquid Metal

Researchers have developed three-dimensional structures out of liquid metal. Image: Michael Dickey.
Researchers have developed three-dimensional structures out of liquid metal.

Image: Michael Dickey.

Abstract:
"3-D Printing of Free Standing Liquid Metal Microstructures"

Authors: Collin Ladd, Ju-Hee So, John Muth and Michael D. Dickey, North Carolina State University

Published: Online July 4 in Advanced Materials

DOI: 10.1002/adma.201301400

Abstract: This paper describes a method to direct-write liquid metal microcomponents at room temperature. 3-D printing is gaining popularity for rapid prototyping and patterning. Most 3-D printers extrude molten polymer that quickly cools and solidifies. The ability to pattern liquids into arbitrary shapes both in and out of plane is usually limited by interfacial tension. A classic example is the break-up of cylinders of liquid into droplets when the aspect ratio of the cylinder exceeds the Rayleigh stability limit of [pi]. Here, we show it is possible to direct-write a low viscosity liquid metal at room temperature into a variety of stable free-standing 3-D microstructures (cylinders with aspect ratios significantly beyond the Rayleigh stability limit, 3-D arrays of droplets, out of plane arches, wires). A thin (~ 1 nm thick), passivating oxide skin forms rapidly on the surface of the liquid metal and stabilizes the microstructures despite the low viscosity and large surface energy of the liquid. The ability to directly print metals with liquid-like properties is important for soft, stretchable, and shape reconfigurable analogs to wires, electrical interconnects, electrodes, antennas, meta-materials, and optical materials.

Researchers Build 3-D Structures Out of Liquid Metal

Raleigh, NC | Posted on July 9th, 2013

Researchers from North Carolina State University have developed three-dimensional (3-D) printing technology and techniques to create free-standing structures made of liquid metal at room temperature.

"It's difficult to create structures out of liquids, because liquids want to bead up. But we've found that a liquid metal alloy of gallium and indium reacts to the oxygen in the air at room temperature to form a ‘skin' that allows the liquid metal structures to retain their shapes," says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing the work.

The researchers developed multiple techniques for creating these structures, which can be used to connect electronic components in three dimensions. White it is relatively straightforward to pattern the metal "in plane" - meaning all on the same level - these liquid metal structures can also form shapes that reach up or down.

One technique involves stacking droplets of liquid metal on top of each other, much like a stack of oranges at the supermarket. The droplets adhere to one another, but retain their shape - they do not merge into a single, larger droplet. Video of the process is available here.

Another technique injects liquid metal into a polymer template, so that the metal takes on a specific shape. The template is then dissolved, leaving the bare, liquid metal in the desired shape. The researchers also developed techniques for creating liquid metal wires, which retain their shape even when held perpendicular to the substrate.

Dickey's team is currently exploring how to further develop these techniques, as well as how to use them in various electronics applications and in conjunction with established 3-D printing technologies.

"I'd also like to note that the work by an undergraduate, Collin Ladd, was indispensable to this project," Dickey says. "He helped develop the concept, and literally created some of this technology out of spare parts he found himself."

The work was supported by a National Science Foundation CAREER award and the National Science Foundation's ASSIST Engineering Research Center at NC State.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Michael Dickey

919.513.0273

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “3-D Printing of Free Standing Liquid Metal Microstructures,” is published online in Advanced Materials. Ladd, a recent NC State graduate, is lead author. Co-authors are Dickey; former NC State Ph.D. student Dr. Ju-Hee So; and Dr. John Muth, a professor of electrical and computer engineering at NC State.

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

3D & 4D printing/Additive-manufacturing

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023

3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project