Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An Innovative material for the Green Earth: Simple and inexpensive process to make a material for CO2 adsorption

(Left)It shows TEM image of np-MgO-500. (Right) This is the schematic view of the direct conversion from aph-MOG to np-metal oxide by heating under nitrogen atmosphere.

Credit: UNIST
(Left)It shows TEM image of np-MgO-500. (Right) This is the schematic view of the direct conversion from aph-MOG to np-metal oxide by heating under nitrogen atmosphere.

Credit: UNIST

Abstract:
Researchers from Ulsan National Institute of Science and Technology (UNIST), S. Korea, developed a novel, simple method to synthesize hierarchically nanoporous frameworks of nanocrystalline metal oxides such as magnesia and ceria by the thermal conversion of well-designed metal-organic frameworks (MOFs).

An Innovative material for the Green Earth: Simple and inexpensive process to make a material for CO2 adsorption

Ulsan, South Korea | Posted on June 17th, 2013

The novel material developed by the UNIST research team has exceptionally high CO2 adsorption capacity which could pave the way to save the Earth from CO2 pollution.

Nanoporous materials consist of organic or inorganic frameworks with a regular, porous structure. Because of their uniform pore sizes they have the property of letting only certain substances pass through, while blocking others. Nanoporous metal oxide materials are ubiquitous in materials science because of their numerous potential applications in various areas, including adsorption, catalysis, energy conversion and storage, optoelectronics, and drug delivery. While synthetic strategies for the preparation of siliceous nanoporous materials are well-established, non-siliceous metal oxide-based nanoporous materials still present challenges.

A description of the new research was published (Web) on May 7 in the Journal of the American Chemical Society. (Title: Nanoporous Metal Oxides with Tunable and Nanocrystalline Frameworks via Conversion of Metal-Organic Frameworks) This article will be also highlighted in the Editor's Choice of the journal Science.

Leading the research team was married couple Hoi Ri Moon and Sang Hoon Joo, both assistant professors at UNIST, who contributed to synthesizing nanoporous metal oxides and characterizing nanoporous materials respectively. Fellow authors include Tae Kyung Kim, Kyung Joo Lee, Jae Yeong Cheon and Jae Hwa Lee from UNIST.

The UNIST research team used MOFs based on aliphatic carboxylate ligands which are thermally less stable and much more labile than aromatic ligands. Specifically, the aliphatic ligand is adipic acid, which is a precursor for the production of nylon, and thus very important from an industrial perspective and low in price. During the thermolysis of a crystalline, aliphatic carboxylate ligand-based MOF (aph-MOF), the ligands were transformed into organic moieties via chemical decomposition, and were confined as vesicles in the solids.

The organic vesicles acted as self-generated porogens, which later were converted into nanopores; they also prevented aggregation of the metal oxide nanocrystals. Finally, upon thermolysis at higher temperature, the confined organic moieties evaporated, generating highly porous nanostructures comprising nanocrystalline metal oxides. The control of the retention time and the evaporation rate of the organic moieties in the host solid were critical for the successful formation of nanoporous metal oxides with nanocrystalline frameworks. The thermal treatments converted the Mg-aph-MOF into 3-dimensionally nanoporous MgO frameworks instead of discrete MgO nanoparticles embedded in a carbon matrix. Significantly, nanoporous MgO exhibited exceptional CO2 adsorption capacity (9.2 wt %) under conditions mimicking flue gas.

"I believe MOF-driven strategy can be expanded to other nanoporous monometallic and multimetallic oxides with a multitude of potential applications, especially for energy-related materials" said Prof. Moon. "Because of its high CO2 adsorption capacity, it will open a new way for environmental solutions."

"Various metal oxides converted from well-designed MOFs are being studied as fuel cell catalysts, also" said Prof. Joo, explaining his future research plan.

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

####

For more information, please click here

Contacts:
Eunhee Song

82-522-171-224

Copyright © Ulsan National Institute of Science and Technology(UNIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original article is found at:

Homepage of Prof. Hoi Ri Moon:

Homepage of Prof. Sang Hoon Joo:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project