Home > Press > Iranian Scientists Produce Dynamometer for Nanoparticles, Biocells
Abstract:
Iranian researchers from the Institute for Advances Studies in Basic Sciences in Zanjan studied the axial potential of optical tweezers and succeeded in using this device for dynamometric purposes in experiments such as DNA tension and studying the mechanical properties of biocells.
The use of optical tweezers in order to measure the force in objects at nanometirc scale can be an interesting idea for the researchers in all fields, including biosciences. The use of the optical tweezers requires a comprehensive and exact understanding of its potential.
The main objective of this project is to study and identify the axial potential of optical tweezers and to use it in dynamometric experiments such as DNA tension and evaluation of chemical properties of biocells.
Among the applications of this device, mention can be made of dynamometry in experiments with fluid environment at micro or nanometric scales and studying the mechanical properties of biocells.
Dynamometric experiments such as DNA tension, RNA, and other biopolymers are much easier in axial direction. In this experiment, there is no need for the use of micropipette and its challenges or the use of two-edged trap. The polymer can be stuck from one end to the sample vessel and it can be pulled from the other end towards axial direction. This arrangement is much easier and more optimized, and it is the only solution in some cases.
Results of the research have been published in Optics Letters, vol. 38, issue 5, 2013. For more information about the details of the research, study the full paper on pages 685-687 on the same journal.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||