Home > Press > Noble way to low-cost fuel cells, halogenated graphene may replace expensive platinum
![]() |
A schematic representation for the edge expansions of XGnPs is seen in the top images. The bottom images contain ball-mill capsule containing the pristine graphite and stainless steel balls.
Credit: UNIST |
Abstract:
The research team of Ulsan National Institute of Science and Technology (UNIST), Case Western Reserve University and University of North Texas have paved a new way for affordable commercialization of fuel cells with efficient metal-free electrocatalysts using edge-halogenated graphene nanoplatelets.
Fuel cell technology has come a long way since the early days in the Apollo space program. Certainly the idea of running a car on pure hydrogen is an exciting prospect as the only emissions will be pure water.
But how much will you be willing to pay for this car? Current fuel cell technologies, need platinum (Pt) catalysts which are costly and insufficient for industry demand.
Beside the high cost of platinum, another major drawback for commercialization of fuel cell technology is the sluggish oxygen reduction reaction (ORR) at cathode. Although, Pt and its alloys have been considered to be the most reliable cathodic ORR electrocatalysts in fuel cells, it also suffers from methanol crossover/carbon monoxide (CO) poisoning effects and poor long-term operation stability.
Now, there is an alternative. The research team have created a low cost metal-free catalyst which can be scaled up for industrial and commercial use. They synthesized a series of edge-selectively halogenated (Cl, Br and I) graphene nanoplatelets (XGnPs) by ball-milling graphite flake in the presence of chlorine (Cl2), bromine (Br2), or iodine (I2), respectively.
The resultant XGnPs were tested as cathode electrodes of fuel cells and revealed remarkable electrocatalytic activities for ORR with higher tolerance to methanol crossover/CO poisoning effects and longer-term stability than those of the original graphite and commercial Pt/C electrocatalysts. This makes XGnPs a possible replacement for platinum (Pt) in fuel cells, bringing down the cost and increasing the likelihood of commercialization.
"Our result presents new insights and practical methods for designing edge-functionalized GnPs as high-performance metal-free ORR electrocatalysts through low-cost and scalable ball-milling techniques," said Prof. Jong-Beom Baek of Ulsan National Institute of Science and Technology, who led the research team.
"We made metal-free catalysts using an affordable and scalable process," said Prof. Liming Dai of Case Western Reserve and one of the paper's authors. "The catalysts are more stable than platinum catalysts and tolerate carbon monoxide poisoning and methanol crossover."
The research was led by Prof. Jong-Beom Baek, director of the Interdisciplinary School of Green Energy/Low-Dimensional Carbon Materials Center at South Korea's Ulsan National Institute of Science and Technology. Fellow authors include: In-Yup Jeon, Hyun-Jung Choi, Min Choi, Jeong-Min Seo, Sun-Min Jung, Min-Jung Kim and Neojung Park, from Ulsan; Sheng Zhang from Case Western Reserve; and Lipeng Zhang and Zhenhai Xia from North Texas.
More Information on Edge-halogenated graphene nanoplatelets (XGnPs)
Edge-halogenated graphene nanoplatelets (XGnPs) are solution processable, and show remarkable electrocatalytic activity toward ORR with a high selectivity, good tolerance and excellent long-term cycle stability.
Although extensive efforts have been devoted to the development of non-precious metal-based electrocatalysts, their practical application is still far from being a reality due to their limited electrocatalytic activity, poor cycle stability, and sometimes environmental hazard.
Alternatively, carbon-based materials, doped with heteroatoms such as boron (B), halogen (Cl, Br, I) nitrogen (N), phosphorus (P), sulfur (S) and their mixtures, have attracted tremendous attentions as metal-free ORR electrocatalysts. However, full potential of these carbon-based, metal-free catalysts is hard to achieve without the synthetic capability for large-scale, low-cost production of the heteroatome-doped, carbon-based materials.
These novel metal-free electrocatalysts were synthesized by ball-milling at high speed rotation (500 rpm) using stainless steel balls, generating sufficient kinetic energy to cause bond cleavages of the graphitic C-C framework. As a result, active carbon species formed at the broken edges of graphite, which were sufficiently reactive to pick up halogens in the sealed ball-mill capsule.
###
A description and details of the new research was published on June 5, 2013 (British Time) in the (Nature Publishing Group) Scientific Reports. (Title: Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction, DOI: 10.1038/srep01810)
Funding Information: World Class University (WCU), Mid-Career Researcher (MCR) and Basic Research Laboratory programs through the National Research Foundation of Korea, US-Korea NBIT and the U.S Air Force Office of Scientific Research funded the research.
####
For more information, please click here
Contacts:
Eunhee Song
82-522-171-224
Copyright © Ulsan National Institute of Science and Technology(UNIST)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |