Home > Press > New light-controlled gel makes big strides in soft robotics
Abstract:
Inspired by the way plants grow toward light sources, a phenomenon known as phototropism, bioengineers from the University of California, Berkeley have created a hydrogel that could be manipulated by light.
This video demonstrates how a new hydrogel material, shaped like a hand about two centimeters wide, can be controlled by near-infrared laser light. (Video by Eddie Wang)
The new hydrogel, described earlier this month in the journal Nano Letters, could have future applications in the emerging field of soft robotics, which takes a cue from squishy creatures in nature, like starfish, squids and octopuses, to create flexible components.
"Shape-changing gels such as ours could have applications for drug delivery and tissue engineering," said study principal investigator Seung-Wuk Lee, associated professor of bioengineering.
Researchers combined synthetic, elastic proteins with sheets of graphene, one-atom thick carbon sheets that stack to form graphite. Graphite is the same material used in pencil lead. The graphene sheets generate heat when exposed to near infrared light. That heat affects the synthetic proteins, which absorb water when cooled and release it when hot.
The two materials together formed the nanocomposite biopolymer, or hydrogel, which was designed so that one side was more porous than the other. The side that was more porous allowed a faster absorption and release of water than the other side.
"By combining these materials, we were able to mimic the way plant cells expand and shrink in response to light in a much more precisely controlled manner," said Lee. "Because the gels shrank unevenly, the material bent when the light hit it. We used these bending motions to demonstrate a hand-shaped hydrogel that exhibited joint-like articulation when exposed to light."
Other study authors are Eddie Wang and Malav Desai, both graduate students in bioengineering.
####
For more information, please click here
Contacts:
Sarah Yang
Media Relations
(510) 643-7741
Copyright © University of California, Berkeley
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Light-Controlled Graphene-Elastin Composite Hydrogel Actuators (link to Nano Letters abstract):
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Videos/Movies
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |