Home > Press > New Nanopore Sensor Simplifies Analysis of Methylated DNA
![]() |
Abstract:
DNA methylation, the addition of a methyl group to specific locations on a DNA strand, plays a critical role in determining which genes are active in a cell at any given time. It plays an important role in embryonic development, cell growth and reproduction, and many diseases, including cancer. Now, researchers collaborating at the Mayo Clinic and the University of Illinois in Urbana-Champaign have developed a novel single molecule test for detecting DNA methylation that should greatly simplify and advance the study of this important genomic process.
The details of this new test appear in a paper published in the journal Scientific Reports. This study was led by George Vasmatzis, co-leader of the Mayo Clinic's Biomarker Discovery Program in the Center for Individualized Medicine, and Rashid Bashir, co-principal investigator of the Midwest Cancer Nanotechnology Training Center at the University of Illinois, part of the National Cancer Institute's Alliance for Nanotechnology in Cancer.
The new method relies on solid-state nanopores, nanometer-sized holes created using standard semiconductor processing technologies in membranes made of a particular type of insulating material known as a dielectric. Electrical signals from the dielectric change in specific patterns when molecules, such as DNA pass through the nanopore. In this case, the collaborating teams labeled methylated regions of DNA with a specific methyl DNA binding protein known as MBD1.Whenever the protein-labeled region of DNA passes through a nanopore, the electrical current changes by a factor of three compared to when unlabeled regions of DNA pass through the pore, an easily observed change.
"While nanopores have been studied for genomic sequencing and screening analysis, this new assay can potentially circumvent the need for some of the current processes in evaluating epigenetics-related diseases," says Dr. Vasmatzis. He says the assay could eliminate the need for bisulfite conversion of DNA, fluorescent labeling, and polymerase chain reaction (PCR), the standard method for detecting methylated DNA. While this method is useful, its limitation is that it requires large quantities of DNA.
In its current form, this new technique can detect single instances of DNA methylation with high fidelity and determine the total number of methylation sites per DNA molecule. According to Dr. Bashir, "The next step in this research is to increase the spatial resolution by incorporating thinner membranes and by integrating the same preparation steps." Such improvements would then enable researchers to create high-resolution methylation maps that would be useful for characterizing so-called epigenetic diseases, including cancer.
The investigators note that "cancer-specific methylated DNA from most tumor types are known to be present in biopsy specimens and in patient serum at very low concentrations. A rapid, accurate, and amplification free assay to detect these biomarkers from minute sample volumes could prove invaluable in the early detection of disease, monitoring disease progression, and prognosis. With continued development, solid-state nanopores could meet this unmet technological and clinical need."
####
About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © The National Cancer Institute (NCI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
View full paper - "Detection and quantification of methylation in DNA using solid-state nanopores."
Related News Press |
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |