Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Agilent Technologies New AFM/Raman Spectroscopy System Provides Nanoscale Material Identification and Analysis

Abstract:
Agilent Technologies Inc. (NYSE: A) today announced the availability of a high-performance AFM/Raman system for life science and materials science applications. The system seamlessly integrates the Agilent 6000ILM AFM (atomic force microscope) and a HORIBA XploRA INV (inverted Raman microscope). The combination enables researchers to go beyond the optical diffraction limit to achieve nanoscale resolution as they perform Raman spectroscopy.

Agilent Technologies New AFM/Raman Spectroscopy System Provides Nanoscale Material Identification and Analysis

Santa Clara, CA | Posted on May 13th, 2013

"Key capabilities of this new high-precision system include AFM/Raman co-localization, tip-enhanced Raman spectroscopy for transparent samples, and AFM force-volume spectroscopy," said Jeff Jones, general manager for Agilent's nanoinstrumentation facility in Chandler, Ariz. "It's an ideal solution for advanced life science research, including studies of cell membranes, the surface structure of cells, individual proteins, single molecules, and biopolymers, as well as for investigating novel materials such as graphene."

AFM/Raman co-localization can be performed either sequentially, using the new system's Raman laser scanning option, or simultaneously, using Agilent PicoView software to control the system. Raman mapping is achieved by acquiring a complete Raman spectrum at each pixel of a 2-D image to create a detailed chemical image of the sample. This image is generated by plotting the peak intensity (material concentration), peak position (molecular structure or material stress), or peak width (crystallinity). The system precisely overlays the detailed chemical image with a 3-D AFM topography image.

The system's XY piezo stage affords both Raman and AFM measurements. The 6000ILM AFM provides a wide range of direct sample property measurements (elasticity, for example) that can be correlated via Raman with chemical composition. Tip-enhanced Raman spectroscopy is also possible.

Agilent's new AFM/Raman system provides an extensive range of AFM force-volume spectroscopy capabilities. Results are fast and reliable. Researchers can use their own algorithms and plug-ins, select their own data points on the fly, acquire force-curve measurements on any data point, and change experimental parameters in real time.

Additional advantages include unrivaled in-liquid AFM imaging via Agilent's patented MAC Mode, an incubator perfusion cell sample plate to facilitate dynamic studies in liquids and gases, and a top-view video optics package that offers the ability to see opaque samples while scanning.

An image of the Agilent 6000ILM AFM and a HORIBA XploRA INV is located at www.agilent.com/find/6000ILMAFM_images .

AFM Instrumentation from Agilent

Agilent offers high-precision, modular AFM solutions for research, industry and education. Worldwide support is provided by experienced application scientists and technical service personnel. Agilent's leading-edge R&D laboratories are dedicated to the timely introduction and optimization of innovative and easy-to-use AFM technologies.

####

About Agilent Technologies Inc.
Agilent Technologies Inc. (NYSE: A) is the world’s premier measurement company and a technology leader in chemical analysis, life sciences, diagnostics, electronics, and communications. The company’s 20,500 employees serve customers in more than 100 countries. Agilent had revenues of $6.9 billion in fiscal 2012.

For more information, please click here

Contacts:
Janet Smith, Americas
+1 970 679 5397


Twitter: @JSmithAgilent

Joan Horwitz, nanomeasurement
+1 480 756 5905

Copyright © Agilent Technologies Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Turning up the signal November 8th, 2024

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project