Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A giant leap to commercialization of polymer solar cell

This shows: (a) Device structures, (b) J−V characteristics, and (c) EQE of PTB7:PC70BM-based PSCs with type I and type II architectures.

Credit: UNIST
This shows: (a) Device structures, (b) J−V characteristics, and (c) EQE of PTB7:PC70BM-based PSCs with type I and type II architectures.

Credit: UNIST

Abstract:
A polymer solar cell is a type of thin film solar cells made with polymers that produce electricity from sunlight by the photovoltaic effect. Most current commercial solar cells are made from a highly purified silicon crystal. The high cost of these silicon solar cells and their complex production process has generated interest in developing alternative photovoltaic technologies.

A giant leap to commercialization of polymer solar cell

Ulsan, Republic of Korea | Posted on May 7th, 2013

Compared to silicon-based devices, PSCs are lightweight (which is important for small autonomous sensors), solution processability (potentially disposable), inexpensive to fabricate (sometimes using printed electronics), flexible, and customizable on the molecular level, and they have lower potential for negative environmental impact. Polymer solar cells have attracted a lot of interest due to these many advantages.

Although these many advantages, PSCs currently suffer from a lack of enough efficiency for large scale applications and stability problems but their promise of extremely cheap production and eventually high efficiency values has led them to be one of the most popular fields in solar cell research.

To maximize PCE, light absorption in the active layer has to be increased using thick bulk heterojunction (BHJ) films. However, the thickness of the active layer is limited by the low carrier mobilities of BHJ materials. Therefore, it is necessary to find the ways to minimize the thickness of BHJ films while maximizing the light absorption capability in the active layer.

The research team employed the surface plasmon resonance (SPR) effect via multi-positional silica-coated silver NPs to increase light absorption. The silica shell in preserves the SPR effect of the Ag NPs by preventing oxidation of the Ag core under ambient conditions and also eliminates the concern about exciton quenching by avoiding direct contact between Ag cores and the active layer. The multi-positional property refers to the ability of NPs to be introduced at both ITO/PEDOT:PSS (type I) and PEDOT:PSS/active layer (type II) interfaces in polymer: fullerene-based BHJ PSCs due to the silica shells.

Because PSCs have many advantages, including low cost, solution processability, and mechanical flexibility, PSCs can be adopted in various applications. However, we should break the efficiency barrier of 10% for commercialization of PSCs.

Jin Young Kim and Soojin Park, both, Associate Professors of the Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea, led this work.

Prof. Kim said, "This is the first report introducing metal NPs between the hole transport layer and active layer for enhancing device performance. The multipositional and solutions-processable properties of our surface plasmon resonance (SPR) materials offer the possibility to use multiple plasmonic effects by introducing various metal nanoparticles into different spatial location for high-performance optoelectronic device via mass production techniques."

"Our work is meaningful to develop novel metal nanoparticles and almost reach 10% efficiency by using these materials. If we continuously focus on optimizing this work, commercialization of PSCs will be a realization but not dream," added Prof. Park.

This research was supported by WCU (World Class University) program through the Korea Science and Engineering Foundation funded the Ministry of Education, Science and Technology (Minister Lee Ju-Ho) and the National Research Foundation of Korea (President Seung Jong Lee). It has published in Nano Letters (Title: Multipositional Silica-Coated Silver Nanoparticles for High-Performance Polymer Solar Cells ).

####

For more information, please click here

Contacts:
Eunhee Song

Copyright © UNIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Ulsan National Institute of Science and Technology:

The original research article is available at:

Homepage of Prof. Jin Young Kim:

Homepage of Prof. Soojin Park:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project