Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Columbia Engineers Manipulate a Buckyball by Inserting a Single Water Molecule: Nanoscale Technology Used to Drive a “Big" C60 through a "Small" H2O May Help Drug Delivery

Abstract:
Columbia Engineering researchers have developed a technique to isolate a single water molecule inside a buckyball, or C60, and to drive motion of the so-called "big" nonpolar ball through the encapsulated "small" polar H2O molecule, a controlling transport mechanism in a nanochannel under an external electric field. They expect this method will lead to an array of new applications, including effective ways to control drug delivery and to assemble C60-based functional 3D structures at the nanoscale level, as well as expanding our understanding of single molecule properties. The study was published as a "Physics Focus" in the April 12 issue of Physical Review Letters.

Columbia Engineers Manipulate a Buckyball by Inserting a Single Water Molecule: Nanoscale Technology Used to Drive a “Big" C60 through a "Small" H2O May Help Drug Delivery

New York, NY | Posted on May 6th, 2013

"Buckyballs, more formally known as Buckminsterfullerenes, or fullerenes, are spherical, hollow molecular structures made of 60 carbon atoms, with the size of ~1 nm—6,000-8,000 times smaller than a regular red blood cell— and, because of their highly symmetrical structure, very hydrophobic core, covalent nonpolar bonds, and more importantly, relatively non-toxicity to the human body, they are a perfect container for drug molecules," explains Xi Chen, associate professor of earth and environmental engineering, who led the research. He and his team believe their work is the first attempt to manipulate a nonpolar molecule (C60) or structure by an inserted polar molecule (H2O).

Chen says his findings may open a new way of controlling and delivering a nonpolar "big" molecule like C60 through the encapsulated "small" polar molecule like H2O. This could lead to important applications in nanotech and biotech areas, including drug delivery where researchers can "imprison" the polar drug molecules inside a hollow structure and then guide them to their targets.

And, from a fundamental point of view, he hopes that the isolated, encapsulated single molecule, like the H2O one in his study, will provide an important platform for revealing and probing inherent characteristics of a single molecule, free from its outside environment.

"The important role of hydrogen bonds in the properties of water, like surface tension and viscosity, and the precise interactions between a single water molecule and hydrogen bonds, are still unclear," Chen notes, "so our new technique to isolate a single water molecule free from any hydrogen bonds provides an opportunity for answering these questions."

Since the discovery of C60 in the 1980s, scientists have been trying to solve the challenge of controlling a single C60. Several mechanical strategies involving AFM (atomic force microscopy) have been developed, but these are costly and time-intensive. The ability to drive a single C60 through a simple external force field, such as an electrical or magnetic field, would be a major step forward.

In the Columbia Engineering study, the researchers found that, when they encapsulated a polar molecule within a nonpolar fullerene, they could use an external electrical field to transport the structures to desired positions and adjust the transport velocity so that both delivery direction and time were controllable. Chen's team came up with the idea a year ago, and confirmed their surprising results through extensive atomistic simulations.

Chen plans to explore more properties of the molecule and other similar structures, and to continue probing the interaction and communication of the encapsulated single water molecule with its surroundings.

"Studying the communication of an imprisoned single water molecule with its outside environment such as adjacent molecules," he adds, "is like learning how a person sitting inside a room makes connections with friends outside, selectively on demand (i.e. with control) or randomly (without control) through, say, over the phone."

This research was funded by the National Science Foundation and DARPA (Defense Advanced Research Projects Agency.

####

About Columbia Engineering
Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world’s leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society’s more difficult challenges.

For more information, please click here

Contacts:
Holly Evarts
Director
Strategic Communications and Media Relations
212-854-3206 (o)
347-453-7408 (c)

Copyright © Columbia Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project