Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Temp-controlled 'nanopores' may allow detailed blood analysis

By tethering gold nanoparticles (large spheres in top image) to the nanopore (violet), the temperature around the nanopore can be changed quickly and precisely with laser light, allowing scientists to distinguish between similar molecules in the pore that behave differently under varied temperature conditions.

Credit: Robertson/NIST
By tethering gold nanoparticles (large spheres in top image) to the nanopore (violet), the temperature around the nanopore can be changed quickly and precisely with laser light, allowing scientists to distinguish between similar molecules in the pore that behave differently under varied temperature conditions.

Credit: Robertson/NIST

Abstract:
Tiny biomolecular chambers called nanopores that can be selectively heated may help doctors diagnose disease more effectively if recent research by a team at the National Institute of Standards and Technology (NIST), Wheaton College, and Virginia Commonwealth University (VCU) proves effective. Though the findings* may be years away from application in the clinic, they may one day improve doctors' ability to search the bloodstream quickly for indicators of disease—a longstanding goal of medical research.

Temp-controlled 'nanopores' may allow detailed blood analysis

Gaithersburg, MD | Posted on March 9th, 2013

The team has pioneered work on the use of nanopores—tiny chambers that mimic the ion channels in the membranes of cells—for the detection and identification of a wide range of molecules, including DNA. Ion channels are the gateways by which the cell admits and expels materials like proteins, ions and nucleic acids. The typical ion channel is so small that only one molecule can fit inside at a time.

Previously, team members inserted a nanopore into an artificial cell membrane, which they placed between two electrodes. With this setup, they could drive individual molecules into the nanopore and trap them there for a few milliseconds, enough to explore some of their physical characteristics.

"A single molecule creates a marked change in current that flows through the pore, which allows us to measure the molecule's mass and electrical charge with high accuracy," says Joseph Reiner, a physicist at VCU who previously worked at NIST. "This enables discrimination between different molecules at high resolution. But for real-world medical work, doctors and clinicians will need even more advanced measurement capability."

A goal of the team's work is to differentiate among not just several types of molecules, but among the many thousands of different proteins and other biomarkers in our bloodstream. For example, changes in protein levels can indicate the onset of disease, but with so many similar molecules in the mix, it is important not to mistake one for another. So the team expanded their measurement capability by attaching gold nanoparticles to engineered nanopores, "which provides another means to discriminate between various molecular species via temperature control," Reiner says.

The team attached gold nanoparticles to the nanopore via tethers made from complementary DNA strands. Gold's ability to absorb light and quickly convert its energy to heat that conducts into the adjacent solution allows the team to alter the temperature of the nanopore with a laser at will, dynamically changing the way individual molecules interact with it.

"Historically, sudden temperature changes were used to determine the rates of chemical reactions that were previously inaccessible to measurement," says NIST biophysicist John Kasianowicz. "The ability to rapidly change temperatures in volumes commensurate with the size of single molecules will permit the separation of subtly different species. This will not only aid the detection and identification of biomarkers, it will also help develop a deeper understanding of thermodynamic and kinetic processes in single molecules."

The team is researching ways to improve semiconductor-based nanopores, which could further expand this new measurement capability.

*J.E. Reiner, J.W.F. Robertson, D.L. Burden, L.K. Burden, A. Balijepalli and J.J. Kasianowicz. Temperature sculpting in yoctoliter volumes. Journal of the American Chemical Society, DOI: 10.1021/ja309892e. Jan. 24, 2013.

####

For more information, please click here

Contacts:
Chad Boutin

301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Lab-on-a-chip

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses April 17th, 2020

Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project