Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers show that lipid nanoparticles are ideal for delivering genes and drugs

Expression of the retinoschisis protein (green) after the transfection of a cell line of retina pigment epithelium (ARPE-19) with a lipid nanoparticle-based formulation with the RS1 gene. In blue, the nuclei of the cells.
Expression of the retinoschisis protein (green) after the transfection of a cell line of retina pigment epithelium (ARPE-19) with a lipid nanoparticle-based formulation with the RS1 gene. In blue, the nuclei of the cells.

Abstract:
At the Faculty of Pharmacy of the Basque Public University (UPV/EHU) the Pharmacokinetics, Nanotechnology and Gene Therapy research team is using nanotechnology to develop new formulations that can be applied to drugs and gene therapy.Specifically, they are using nanoparticles todesignsystems for delivering genes and drugs; this helps to get the genes and drugs tothe point of action so that they can produce the desired effect.

Researchers show that lipid nanoparticles are ideal for delivering genes and drugs

Usurbil, Spain | Posted on March 1st, 2013

The research team has shown that lipid nanoparticles, which they have been working on for several years, are ideal for acting as vectors in gene therapy.Gene therapy is a highly promising alternative for diseases that so far have no effective treatment.It consists of delivering a nucleic acid, for example, a therapeutic gene, to modulate the expression of a protein that is found to be altered in a specific disease, thus reversing the biological disorder.

The main obstacle is that the genetic material cannot be formulated in conventional pharmaceutical ways, because it becomes degraded within the organism and cannot perform its function.To overcome this obstacle, viral vectors are normally used and they are able to deliver the therapeutic gene to the cells in which it has to act.However, as Dr Alicia Rodriguez explains, "viral vectors have a great drawback because they have a great potential to develop tumours.That is why there is a lot of interest in developing non-viral vectors, like vectors based on lipid nanoparticles."

"In this respect," adds Dr Rodriguez, "we have for several years been working to develop formulations for treating degenerative retina diseases, diseases for which there is currently no effective curative or palliative treatment and which causes blindness in the patients who in many cases are very young people."The research they have done has borne fruit already, and they have in fact managed to develop a vector capable of making a protein express itself in the eyes of rats after ocular delivery.The work has produced two patents and various papers published in top scientific journals, like Human Gene Therapy.
Aim:to improve drug absorption

Another application of lipid nanoparticles is to develop new formulations to deliver drugs that are not particularly soluble or which are difficult to absorb.Dr Rodriguez explained the problem with these drugs:"40% of the new pharmacologically active molecules are reckoned to be insoluble or not very soluble in water; that prevents many of these potentially active molecules from ever reaching the clinic because of the problems involved in developing a safe, effective formulation."

The Faculty of Pharmacy's research team has shown that the strategy of encapsulating drugs of this type in lipid nanoparticles is effective:"They are spheres made of lipids and they have very small particleswhich encase the drug.That way, the absorption of the drug given orally can be increased," points out Dr Rodriguez.

Part of the research was done in collaboration with the research team led by DrVéroniquePréat, of the Catholic University of Louvain in Belgium.There they studied the capacity of the nanoparticles to pass through the intestinal barrier and therefore increase the permeability of the drug.The results of this work have been published in the Journal of Controlled Release, a leading journal within the specialty.

Furthermore, while considerable advances have been made in both areas (vectors for gene therapy and improvement in insoluble drug absorption), the researchers in the Pharmacokinetics, Nanotechnology and Gene Therapy team are working in a third area linked to hepatitis C in which they also hope to achieve positive results.

####

For more information, please click here

Contacts:
Komunikazio Bulegoa
UPV/EHU

Contact details:

(+34) 946012065

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project