Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Innovative Nano Sized Metallic Semi-Conductor: Indian researchers have explored the semiconducting nature of lead nanopowder

T. Theivasanthi
T. Theivasanthi

Abstract:
Indian researchers have developed a new metallic semiconductor. The group (Theivasanthi and Alagar), based at Centre for Research and Post Graduate Department of Physics, Ayya Nadar Janaki Ammal College comments: "To our best knowledge, this is the first demonstration of semiconducting nature of lead nanopowder (Pb). So far, lead metal has been known as a good / super conductor." The researchers have explained the synthesis procedures of this metal powder in their earlier report [Theivasanthi et al, arXiv:1212.5795] and explore its semiconducting properties in current report [Theivasanthi et al, arXiv:1302.1456]. Findings of this study suggests that the synthesized material is an efficient semiconducting material and can be utilized for making solar cells, optoelectronic, power and other semiconductor devices. TEM image of spherical Pb Nanoparticles is in Fig.1. This work throws some light on and helps further research on nano-sized lead powder.

New Innovative Nano Sized Metallic Semi-Conductor: Indian researchers have explored the semiconducting nature of lead nanopowder

India | Posted on February 18th, 2013

It is a well known fact that generally nano-materials have behaviors different from their bulk material. Size and shape provides important control over many of the physical properties (viz., melting point, magnetism, specific heat, conductivity, band gap, etc.), luminescence, optical, chemical and catalytic properties of nanomaterials. The present research has been done, based on these facts and the new nano sized Pb metallic semiconductor has been innovated. Photoluminescence study of the material indicates the emission of photon and suggests presence of bandgap in the material. This confirms semiconducting properties. PL spectra are in Fig.2 & 3.

As a direct bandgap material, the visible light shining on its surface is well absorbed by this material. Also, the large surface area (314 nm2) and high specific surface area (52m2g-1) of this material augments its light absorbance property. Quantum yield value greater than 1 of this material is the result of the gain of energy and it shows possible utilization for heat or photochemical reaction or photo-induced or radiation-induced chain reactions, in which a single photon may trigger a long chain of transformations. These characters will be very useful while applying this semiconductor material in photovoltaic cells.

The researchers have studied band gap values of Pb nanopowder obtained from UV-Vis, PL, Cyclic voltammetry analyses and resistivity values from Four probe analyses results. "Our data clearly indicates the semiconducting nature of Pb nanopowder and its direct bandgap," the researchers comment, adding: "Further research related to electrical behaviors, battery performances etc. of this material are going on."

####

For more information, please click here

Contacts:
T. Theivasanthi

Copyright © SciGuru Science News

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This research has been published in arXiv of Cornell University:

and:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project