Home > Press > ‘Slow Light’ Advance Could Speed Optical Computing, Telecommunications: Metamaterials provide active control of slow-light devices
Schematic of active optical control of terahertz waves in electromagnetically induced transparency metamaterials. |
Abstract:
Wireless communications and optical computing could soon get a significant boost in speed, thanks to "slow light" and specialized metamaterials through which it travels.
Researchers have made the first demonstration of rapidly switching on and off "slow light" in specially designed materials at room temperature. This work opens the possibility to design novel, chip-scale, ultrafast devices for applications in terahertz wireless communications and all-optical computing.
Significance of the research
In slow light, a propagating light pulse is substantially slowed down, compared with the velocity of light in a vacuum. This is accomplished by the light's interaction with the medium through which it is shining. Slow light has potential applications in telecommunications because it could lead to a more orderly traffic flow in networks.
Like cars slowing down or speeding up to negotiate an intersection, packets of information are better managed if their transmission speed is changeable. Another potential application is the storage of information carried by light pulses, leading to a potential all-optical computing system. Current semiconductor materials used in computing devices are reaching some of their limits, and an all-optical system would potentially enable improvements in size reduction and calculation speeds.
The effects of strong light-matter coupling used in slowing down light might create entangled photon pairs that lead to quantum computing capabilities beyond those of modern computers, the researchers say.
Giving classical optical structures a quantum twist
Electromagnetically induced transparency is a quantum interference effect that produces a sharp resonance with extremely low loss and dispersion. However, implementing electromagnetically induced transparency in chip-scale applications is difficult due to the demands of stable gas lasers and low-temperature environments. The key to success is the use of metamaterials, engineered artificial materials containing structures that are smaller than the wavelength of the waves they affect.
Researchers integrated photoconductive silicon into the metamaterial unit cell. This material enables a switching of the transparency resonance window through the excitation of ultrafast, femto-second optical pulses. This phenomenon causes an optically tunable group delay of the terahertz light. The "slow light" behavior can be controlled at an ultrafast time scale by integrating appropriate semiconductor materials with conventional metamaterial designs.
In this research, the medium is an active metamaterial that supports a sharp resonance, which leads to a rapid change in the refractive index of the medium over a small range of frequencies. This phenomenon causes a dramatic reduction in the velocity of terahertz light propagation. The resonance can be switched on and off on a time scale of a few pico-seconds. When the resonance transparency is on, the system produces slow light. When the resonance is off, the slow light behavior disappears. This on and off process happens on an ultrafast (pico-second) time scale when a femto-second laser pulse excites the metamaterial. Nature Communications published the research.
The research team
Researchers include Ranjan Singh of High Power Electrodynamics, Abdul K. Azad and Hou-Tong Chen of the Center for Integrated Nanotechnologies, Antoinette Taylor of Materials Physics and Applications, collaborators from Tianjin University, Oklahoma State University, and Imperial College, London. The U.S. Department of Energy supported the LANL research, which was performed, in part, at the Center for Integrated Nanotechnologies, a DOE Office of Science user facility. The work supports the Laboratory's global- and energy-security mission areas.
Additional information
Slow light is just that, light that has been slowed from the traditionally understood standard, 299,792,458 meters per second. While faster-than-light speeds are considered impossible, it is entirely reasonable to guide light through a material that slows or delays the motion of the photons as they move through the medium. The photons are absorbed and then re-emitted, slowing the transmission from one area to another, and in some experiments the light has been stopped altogether. The measurement of how much light is slowed in a material is known as its refractive index. In a vacuum, there is no delay. Through a diamond, with a refractive index of 2.4, the light lingers for a small time.
Metamaterials are assemblies of multiple individual elements fashioned from conventional microscopic materials arranged in periodic patterns. The precise shape, geometry, size, orientation and arrangement of the structures can affect waves of light in an unconventional manner, creating material properties that are unachievable with conventional materials.
####
About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.
Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.
About the Center for Integrated Nanotechnologies
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the U.S. Department of Energy, Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please click here.
For more information, please click here
Contacts:
Nancy Ambrosiano
505.667.0471
Copyright © Los Alamos National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||