Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New findings on the structure of graphite oxides in alcohols

The graphite oxide immersed in water-methanol mixtures with methanol fraction 20-100 percent absorbs only methanol. The figure shows that the distance between the graphene oxide layers remains the same when water is added to methanol and start to increase only when the content of methanol goes below 15 percent.
The graphite oxide immersed in water-methanol mixtures with methanol fraction 20-100 percent absorbs only methanol. The figure shows that the distance between the graphene oxide layers remains the same when water is added to methanol and start to increase only when the content of methanol goes below 15 percent.

Abstract:
The structure of graphite oxide surprisingly expands when cooled in methanol or ethanol. Also, graphite oxide selectively absorbs methanol from water-methanol mixtures. Two new studies by physicists at Umeå University in Sweden, published in ACS Nano and J. Phys. Chem. C, respectively, provide knowledge on new properties of oxidized graphite and graphene.

New findings on the structure of graphite oxides in alcohols

Umeå, Sweden | Posted on February 6th, 2013

Graphene is a two dimensional material consisting of a single layer of carbon atoms arranged in a honeycomb structure. Graphene can be considered as a unique adsorbent material due to its extremely large surface area. One gram of graphene has a surface area comparable to a football field. This surface could be used for adsorption of gases and liquids, in applications for gas storage, extraction of pollutants from water, etc. However, the graphene is hydrophobic, which means that its surface repels water.

On the other hand, oxidation of graphene results in remarkable changes in its properties. Graphene oxide is hydrophilic and it is also easily soluble in water. A material composed of many stacked graphene oxide layers is called graphite oxide. It has many unique properties: it absorbs water and alcohols in large amounts, similar to clays that swell when water is added.

A new study by Alexandr V. Talyzin and his team reveals that graphite oxide is able to incorporate even more methanol and ethanol at low temperatures compared to room temperature. Its structure expands when cooled in an excess of liquid solvent. At -130 degrees Celsius the graphene oxide layers are separated by 20.4 Å due to incorporation of additional ethanol into its structure, compared to approximately 3.4 Å in natural graphite and approximately 6.5 Å in solvent-free graphite oxide.

"The distance between graphene oxide layers at low temperatures is so large that it becomes a composite material with graphene oxide sheets separated by at least four monolayers of methanol or ethanol molecules. What is also remarkable is that this phenomenon is limited only to one specific type of graphite oxide and is not observed in another type studied. In fact, many different kinds of graphite oxide are known and now we start to understand how enormous the variations of their properties are. It is not just one material, it is a whole family of materials," says Alexandr V. Talyzin, researcher at the Department of Physics.

In a separate study published in J. Phys. Chem. C it was demonstrated that a certain type of graphite oxide can be used for selective absorption of methanol from water-methanol mixtures. A very simple prototype filtering experiment showed that when a water-methanol liquid mixture is passed through graphite oxide powder, some of the methanol is absorbed in the powder and the solution passing through contains more pure water.

"In the future we would like to design special membranes composed of graphene oxide layers, which can be used for separation of different solvents and purification of water. These first results help us to understand possible ways to make such membranes," says Alexandr V. Talyzin.

The first example of successful solvent separation effects was reported last year in a study by R.R. Nair et al. from a research team at Manchester University, lead by I.Grigorieva and Nobel Laureate A. Geim, famous for their research in the graphene field.

####

For more information, please click here

Contacts:
David Meyers
+46 (0)90- 786 98 95

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Shujie You , Bertil Sundqvist , and Alexandr V. Talyzin : Enormous Lattice Expansion of Hummers Graphite Oxide in Alcohols at Low Temperatures. ACS Nano, Article ASAP. DOI: 10.1021/nn3051105:

Shujie You, Junchun Yu, Bertil Sundqvist, L. A. Belyaeva, Natalya V. Avramenko, Mikhail V. Korobov, and Alexandr V. Talyzin: Selective Intercalation of Graphite Oxide by Methanol in Water/Methanol Mixtures. J.Phys. Chem. C, Article ASAP. DOI: 10.1021/jp312756w:

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project