Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dye Sensitized Solar Cells Show Higher Performance with Bi-Layer Titanium Dioxide Nanostructures

Abstract:
Iranian researchers from Sharif University of Technology, in association with Cambridge University in Britain, successfully fabricated titanium dioxide dye sensitized solar cells (DSSCs).

Dye Sensitized Solar Cells Show Higher Performance with Bi-Layer Titanium Dioxide Nanostructures

Tehran, Iran | Posted on January 20th, 2013

The solar cells were produced in the form of bi-layer films with different crystalline structures and various morphologies of titanium dioxide nanostructures.

In order to obtain high conversion yield in solar cells, it is necessary to collect ion carriers produced by photons as electrical current before their re-combination. The collection of ion carriers must be carried out significantly faster than the re-combination. A promising solution is to increase the electron emission length in photo-anode electrode made of titanium dioxide nanoparticles with its one-dimensional nanostructures.

Morphology, crystalline structure and optical energy band gap are among the effective parameters on titanium dioxide film in electron transfer rate and the re-combination process of bi-layer DSSCs. Therefore, the researchers systematically studied titanium dioxide dye-sensitized solar cells with single layer and bi-layer film structures with various morphologies and crystalline phases. By measuring the inner resistance of cells, electron life-time, and electron transfer time, they also investigated the modification of their mechanism by using electrochemical impedance spectrometry (EIS).

Results showed that the bi-layer solar cells have higher fill factor rather than single layer cells with the same crystalline structure. In addition, the both single layer and bi-layer solar cells made of titanium dioxide with anatase crystalline structure have higher fill factor and power conversion yield in comparison to the cells consisted of rutile crystalline structure.

Results of the research have been published in September 2012 in Electrochimica Acta, vol. 78. For more information about the detail of the research, visit the full text of the article on pages 384-391 of the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project