Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > PVA Tepla and imec Demonstrate 3D Through-Silicon via (TSV) Void Detection using GHz Scanning acoustic microscopy

Abstract:
Scanning acoustic microscopy (SAM) for non-destructive void inspection after wafer bonding improves wafer thinning performance and tool stability and can also be applied to detect voids in TSVs during processing.

PVA Tepla and imec Demonstrate 3D Through-Silicon via (TSV) Void Detection using GHz Scanning acoustic microscopy

Leuven, Belgium | Posted on January 17th, 2013

Imec and PVA Tepla present breakthrough results in the detection of TSV voids in 3D stacked IC technology. After having applied Scanning Acoustic Microscopy to temporary wafer (de)bonding inspection, they successfully used new advanced GHz SAM technology to detect TSV voids at wafer-level after TSV Copper plating. Together, they will continue to investigate the applicability of high-frequency scanning acoustic microscopy for non-destructive submicron void detection.

The initial focus of the collaboration was on developing metrology aimed at detecting voids after temporary wafer bonding, allowing for proper rework of 3D wafers. Temporary wafer (de)bonding and thin wafer handling remains challenging for 3D stacked IC technology. The development of interface particles and voids during the temporary bonding process has a detrimental impact on the subsequent wafer thinning process steps, affecting the wafer thinning performance as well as long-term tool stability and performance. PVA Tepla and imec have developed an automated foup-to-foup, wafer-level process based on 200MHz Scanning Acoustic Microscopy (SAM) using Tepla's AutoWafer 300 tool.

After demonstrating non-destructive detection of interface particles and voids, imec used PVA Tepla's high-resolution capability GHz frequency SAM tool to successfully detect voids in TSVs of 5µm diameter and 50µm depth, immediately after plating. Future work will concentrate on further refining the process and implementing GHz SAM capability to increase the spatial detection resolution. Moreover, imec and PVA Tepla will investigate the applicability of GHz SAM to detect submicron voids in TSV and to investigate other aspects related to 3D-technology such as bump connection quality.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of close to 2,000 people includes more than 600 industrial residents and guest researchers. In 2011, imec's revenue (P&L) was about 300 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About PVA TePla

PVA TePla Analytical Systems GmbH is a member of the PVA TePla AG group. The company develops advanced technology developments in scanning acoustic microscopy and provides innovative analytical solutions for applications in material science, biology, inspection of solar and semiconductor systems, as well as for defect analysis in ingots for the production of wafers and MEMS systems.

PVA TePla Group is a specialist for high-temperature and vacuum furnaces. Its core competencies are in the fields of hard-metal sintering and crystal growing, the application of plasma systems for surface activation and ultra-fine cleaning as well as the application of inspection systems for high tech materials.

For more information, please click here

Contacts:
imec :
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175


PVA TePla:
Sandy Kolbe
Executive Assistance
T: +49 (0)7363 9544 – 200


Olga Walsh
Business Technology
[ f o r m u l a ]
Formula PR, Inc.
1215 Cushman Avenue
San Diego, CA 92110
Office 619-234-0345 |

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project