Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Crystals for efficient refrigeration

The image shows a molecular dynamics simulation of lithium niobate under a time varying electric field, which changes the sign of the polarization. Red is niobium, green is oxygen, and lithium shows a range of colors for different time steps. The niobium and oxygen are shown only for one time step for clarity. The image shows a small part of the actual simulation.

Credit: Maimon Rose and Ronald Cohen Carnegie Institution
The image shows a molecular dynamics simulation of lithium niobate under a time varying electric field, which changes the sign of the polarization. Red is niobium, green is oxygen, and lithium shows a range of colors for different time steps. The niobium and oxygen are shown only for one time step for clarity. The image shows a small part of the actual simulation.

Credit: Maimon Rose and Ronald Cohen Carnegie Institution

Abstract:
Researchers at the Carnegie Institution have discovered a new efficient way to pump heat using crystals. The crystals can pump or extract heat, even on the nanoscale, so they could be used on computer chips to prevent overheating or even meltdown, which is currently a major limit to higher computer speeds. The research is published in the Physical Review Letters.

Crystals for efficient refrigeration

Washington, DC | Posted on November 5th, 2012

Ronald Cohen, staff scientist at Carnegie's Geophysical Laboratory and Maimon Rose, originally a high school intern now at the University of Chicago carried out the research. They performed simulations on ferroelectric crystals—materials that have electrical polarization in the absence of an electric field. The electrical polarization can be reversed by applying an external electrical field. The scientists found that the introduction of an electric field causes a giant temperature change in the material, dubbed the electrocaloric effect, far above a temperature to a so-called paraelectric state.

"The electrocaloric effect pumps heat through changing temperature by way of an applied electric field," explained Cohen. "The effect has been known since the 1930s, but has not been exploited because people were using materials with high transition temperatures. We found that the effect is larger if the ambient temperature is well above the transition temperature, so low transition temperature materials are preferred."

Ferroelectrics become paraelectric—that is, have no polarization under zero electric field above their transition temperature, which is the temperature at which a material changes its state from ferroelectric to paraelectric.

Rose and Cohen used atomic-scale molecular dynamics simulations, where they followed the behavior of atoms in the ferroelectric lithium niobate as functions of temperature and an electrical field. Maimon Rose started this work as a high school summer intern and is now in his second year as an undergraduate in biology at the University of Chicago. He worked on the project during breaks as an intern supported by EFree, DOE Energy Frontier Research Center at the Geophysical Laboratory. Rose remarked, "Lithium niobate had not been studied before like this. We were pretty surprised to see such a huge temperature change."

*The work was supported by the Center for Energy Frontier Research in Extreme Environments (EFree) at the Carnegie Institution's Geophysical Laboratory.

####

About Carnegie Institution
The Carnegie Institution (www.Carnegiescience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary sciences.

For more information, please click here

Contacts:
Ronald Cohen

202-478-8937

Copyright © Carnegie Institution

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project