Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Totally tubular films show promise for touchscreens: Rice University lab creates simple method for flexible, conductive carbon nanotube sheets

A thin film of pure carbon nanotubes produced at Rice Universityshows promise as a component of flexible, transparent touchscreens. (Credit: Pasquali Lab/Rice University)
A thin film of pure carbon nanotubes produced at Rice Universityshows promise as a component of flexible, transparent touchscreens.

(Credit: Pasquali Lab/Rice University)

Abstract:
A Rice University team has hit upon a method to produce nearly transparent films of electrically conductive carbon nanotubes, a goal sought by researchers around the world.

Totally tubular films show promise for touchscreens: Rice University lab creates simple method for flexible, conductive carbon nanotube sheets

Houston, TX | Posted on October 29th, 2012

The lab of Rice researcher Matteo Pasquali found that slides dipped into a solution of pure nanotubes in chlorosulfonic acid (CSA) left them with an even coat of nanotubes that, after further processing, had none of the disadvantages seen with other methods.

The films may be suitable for flexible electronic displays and touchscreens, according to the paper published this month in the American Chemical Society journal ACS Nano.

"I think this could be the way that high-performance transparent electrodes are made in the future," said Pasquali, a professor of chemical and biomolecular engineering and of chemistry. "The solution is straightforward. It's a very simple process."

The method is scalable to high-throughput processes like slot, slide and roll coating used by industry, Pasquali said.

A frustrating characteristic of nanotubes, particularly long ones, is that they attract each other in common solvents, making it a challenge to disperse them. Long nanotubes are believed to be the key to high-performance films.

Researchers have tried other ways to keep them from aggregating, Pasquali said. Functionalizing nanotubes - dressing them with chemicals - can make them less attractive to each other, but it degrades their desirable electrical properties. Combinations of surfactants and sonication have also been tried, but the nanotubes breakduring sonication, and the surfactant leaves a residue that cannot be washed away, he said.

These methods, combined with various means of mechanical coating, have been used to create nanotube films, but none with the level of quality achieved by the Pasquali lab. TheRice films, which are made of nanotubes thousands of times longer than they are wide, remain electrically stable after more than three months, said graduate student and lead author Francesca Mirri.

The nanotubes, literally, had to pass an acid test. "(CSA) is the acid we typically use in our lab, so the first thing we say when we get a new type of carbon nanotubes is, 'OK, let's put it in acid and see what happens,'" Mirri said. In previous research, Pasquali's lab had determined that CSA can dissolve high-quality nanotubes because the acid induces repulsive forces between the tubes that counterbalance the van der Waals force that draws them together.

Mirri and her colleagues produced films by combining single- or double-walled carbon nanotubes with CSA in various concentrations. They dipped glass slides into the nanotube solutions with a motorized arm to ensure even coating as the slides were steadily withdrawn.

They used chloroform to coagulate the acid and dry the slides, followed by a wash of diethyl ether. The researchers were surprised to find the chloroform did not disrupt the thin liquid layer. The result was a film several nanometers thick that provided the best tradeoff between transparency and sheet resistance, a measure of conductivity.

Mirri sees nanotube films as a viable alternative to indium tin oxide (ITO), the current standard conductive layer in transparent displays. "Everybody uses ITO for commercial applications, but the problem is it's a ceramic and really fragile," she said. "It's not good for flexible electronics, and also requires high temperature or vacuum processes to produce; that uses more energy and makes it more expensive.

"Our thin film for something like a cell phone would need very little material -- a few micrograms of nanotubes -- so it wouldn't be that expensive, but it would have similarproperties in transparency and conductivity to ITO," she said.

Co-authors are former postdoctoral researcher Anson Ma, now an assistant professor at the University of Connecticut; postdoctoral researchers Shannon Eichmann and Tienyi Theresa Hsu; former graduate student Natnael Behabtu, now a researcher at DuPont; graduate student Colin Young; and senior undergraduate Dmitri Tsentalovich, all of Rice.

The research was supported by the Air Force Office of Scientific Research, the Air Force Research Laboratories and the Robert A. Welch Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute forPublic Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRice.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project