Home > Press > Near-Field Enhancements along Ring-Shaped Nanostructures
![]() |
The near-field enhancement on the surface of ring-shaped gold nanostructure becomes homogeneous through circularly polarized light. |
Abstract:
Molecules close to metal nanostuctures which are illuminated by light exhibit a complex electic field. They experience electric forces along the field lines, which become very crowded in sharp regions of the nanostructures, such as corners or tips, and in the regions of high electron density. These regions of crowded field lines are called hotspots which are generally localized to small spots. If it would be possible to expand the local field enhancements to the whole sample surface, heating which limits the field enhancement could be avoided and the interaction with molecules would be increased.
Ventsislav Valev (Katholieke Universiteit Leuven) and co-workers could now demonstrate that such near-field enhancements can be extended over an entire nanopatterned gold surface. The extension of the near-field is achieved by driving the electron density along ring-shaped nanostructures with circularly polarized light. They validated their concept by two sets of numerical simulations as well as by a clear experimental confirmation. The homogeneous field enhancement increases the interaction cross-section with molecules which will be useful for chemical and sensing applications.
The research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
To get Advanced Optical Materials email alerts click here:
Related News Press |
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |