Home > Press > New Method for Rapid Separation of Uranyl Ions from Aqueous Solutions
Abstract:
Iranian researchers from Birjand University managed to provide an efficient means for rapid and selective adsorption of uranyl ions from aqueous samples with the help of an external magnetic field.
The mentioned research group has set its main goal on preparing selective and environmentally friendly adsorbents for fast separation and concentration of uranyl and thorium from aqueous solutions, for quite a while. According to their latest findings, modified ferromagnetic iron oxide nanoparticles hold promise for enabling rapid separation of uranyl ions from water samples.
To fulfill the goal, magnetic nanoparticles coated by silica nanoparticles had to be synthesized in the first step.
"Within the initial step of our work, ferromagnetic Fe3O4 nanoparticles with dimensions less than 20 nm were prepared through the sol-gel method. Then, these particles were coated by nano silica particles and modified by amino propyl triethoxy silane and quercetin, subsequently. The ultimate substance represented a novel and efficient adsorbent for uranyl ions from aqueous environments," Dr. Susan Sadeqi, the chief researcher of the group, explained.
In addition to being eco-friendly and efficient, the proposed adsorbent is regenerable and exhibits high selectivity with respect to uranyl.
"Although magnetic nanoparticles, in general, can realize the separation of uranyl and other ionic species, they cannot handle complex matrices (samples comprising of several ion species) as they lack selectivity. That is in fact why we modified the initially-synthesized nanoparticles," Sadeqi added.
Thanks to the advantages of the above-mentioned adsorbent material, they are anticipated to find applications in water and wastewater treatment facilities.
An elaborate scientific report discussing the details of this research work has been recently published in the Journal of Hazardous Materials, volume 215-216, 2012, pages 208 to 216.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||