Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > University of Arkansas Employs Talysurf Profiler to Develop Next Generation of Photovoltaic Cells: Talysurf CCI LIte Optical Profiler Brings Industry-Leading Performance To Non-Contact 3D Measurement of High-Efficiency Solar Cells

Abstract:
Researchers at the University of Arkansas at Fayetteville are utilizing the Talysurf CCI Lite optical 3D profiler from AMETEK Taylor Hobson to measure next-generation photovoltaic cells made from lower-cost materials that offer substantially improved energy conversion efficiencies.

University of Arkansas Employs Talysurf Profiler to Develop Next Generation of Photovoltaic Cells: Talysurf CCI LIte Optical Profiler Brings Industry-Leading Performance To Non-Contact 3D Measurement of High-Efficiency Solar Cells

Fayetteville, AR | Posted on August 14th, 2012

The Optoelectronics Research Lab at the University of Arkansas, under the direction of Electrical Engineering Professor Omar Manasreh, has successfully fabricated advanced solar energy cells with light-to-energy conversion efficiencies 50% greater than the current-generation of silicon-based solar cells. Among the most important instruments in the University's state-of-the-art lab is the Taylsurf CCI Lite non-contact optical 3D profiler. The Optoelectronic Research Lab has received funding by the US Air Force Office of Scientific Research, NASA-EPSCoR Program and NSF-EPSCoR Program.

"The Talysurf CCI profiler has been critical to our success in fabricating highly efficient devices by providing our researchers with accurate information on the precise depths and dimensions of the surface characteristics of these advanced photovoltaic cells," notes Professor Manasreh.

"Current silicon-based solar energy technology results in solar cells with a light-to-energy conversion efficiency of no greater than 23 percent," he adds. "The advanced cells our researchers have developed offer energy conversion efficiencies that are 50 percent greater than those of silicon-based cells. The ultimate goal of this research is to create solar cells with energy conversion efficiencies approaching the theoretical values."

The University of Arkansas has employed two novel approaches in fabricating advanced solar energy devices. The first approach uses a combination of copper, indium, gallium and selenium (CuInSe2 and CuInGaSe2) to grow nanocrystals that are made functional by generating volatile ligands—molecules that bind to a central atom. The nanocrystals are then either converted into thin films or combined with titanium dioxide or zinc oxide nanotubes to create solar cells that are tested and evaluate for their energy efficiency.

The second approach uses molecular beam epitaxy, a method of depositing nanocrystals, to create quantum dots made of indium arsenide (InAs). Quantum dots are nano-sized particles of semiconductor material. To enhance the performance of the solar cells, researchers use short ligands to couple metallic nanoparticles to the nanocrystals and quantum dots. The researchers then investigate the plasmonic effect of trapping sun light, which in turn increases the device's energy conversion efficiency. Other approaches are directed toward investigating iron pyrite solar cells.

The Talysurf CCI Lite has proven highly valuable in conducting this advanced solar energy research. The instrument utilizes Coherence Correlation Interferometry, a Taylor Hobson-patented technique, to provide both long scan ranges and high-resolution surface measurement with a single mode of operation. The result is a non-contact 3D surface texture, step height and micro-dimensional measurement system that can provide results in seconds.

The sensitivity of the coherence correlation algorithm to low-light levels adds to the versatility of the instrument. All types of rough, smooth or highly reflective materials, including glass, metal, photoresist, polymer, liquid inks and pastes, can be measured without difficulty. Careful design and construction of the Talysurf CCI Lite assures stability throughout the measuring loop, an important requirement for high-precision metrology. The instrument's compact footprint also makes it ideal for laboratory use.

The Talysurf CCI Lite comes standard with a high-sensitivity 1-million-pixel image sensor for excellent data resolution in the X and Y axis. This combined with a very low missing data rate results in class-leading surface detail.

The instrument offers a number of features not typically found on tabletop systems, including automatic pattern measurement, X and Y stitching and Z stitching. Detailed measurement and analysis can be carried out automatically with the press of a button. Surface features defined by diameter, area or volume can be automatically identified, measured and sorted. Internationally recognized waviness and roughness parameters in both 3D and 2D are included.

Taylor Hobson is an ultra-precision technology company operating at the highest levels of accuracy within the field of surface and form metrology, providing contact and non-contact measurement solutions for the most demanding industrial and research applications. It is a unit of AMETEK, Inc, a leading global manufacturer of electronic instruments and electromechanical devices with annual sales of more than $3.0 billion.

####

For more information, please click here

Contacts:
Phil Lockhart
(630) 621-3099
Taylor Hobson
1725 Western Drive
West Chicago, IL 60185, USA
Tel: 630-621-3099
Fax: 630-231-1739

Copyright © AMETEK Taylor Hobson

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project