Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Synthesis of Nano Adsorbents for Mercury Elimination Based on WHO Standards

Abstract:
Iranian researchers from Martyr Chamran University of Ahvaz succeeded in the production of a new type of nano adsorbents that can eliminate mercury from polluted environments.

Synthesis of Nano Adsorbents for Mercury Elimination Based on WHO Standards

Tehran, Iran | Posted on August 6th, 2012

The researchers announced that they have come up with the invention by modifying the structure of magnetic iron oxide nanoparticles.

The produced nanoparticles are able to reduce the amount of mercury to less than the concentration announced by World Health Organization (WHO) at shorter periods.

The elimination of the toxic organic and inorganic materials from the environment has always been a challenge for the environment friends. Being known as a very toxic metal for humans and animals, mercury pollutes the habitats of other creatures too. Therefore, the purification of the environment and water reservoirs is vital.

A research team from Martyr Chamran University of Ahvaz succeeded in the elimination of mercury from aqueous media by using 2-mercaptobenzothiazole and by coating it on the magnetic iron oxide nanoparticles. Removal of mercury from water at lower concentrations was carried out by using the same compound successfully.

The synthesized nano adsorbent needs less time to obtain the required adsorption in comparison with other existing adsorbents. According to the results of the experiments, the nano adsorbent is able to rapidly adsorb mercury at low concentrations. It causes the amount of mercury remaining in the environment to be less than the amount announced by WHO.

The results also suggest that the synthesized nano adsorbent is able to adsorb other heavy metals as well.

Full results of the research have been published in details in Journal of Hazardous Materials.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Environment

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project