Home > Press > More Insights into Water Oxidation in Artificial Photosynthesis
Abstract:
Iranian researchers at the Institute for Advanced Studies in Basic Sciences (IASBS) in Zanjan city managed to carry out a comprehensive investigation to identify nanosized manganese oxides as the active catalysts for water oxidation in the reaction of some manganese complexes. 
The artificial photosynthesis has been a subject of intense scholarly interest during the recent years with the objective of creating useful materials or solar energy storage through a smart inspiration from the natural photosynthesis process. The results of the conducted research at IASBS have revealed that nano-metric manganese oxides, which are yielded through the decomposition of manganese complexes, act as active species in the water oxidation process.
"By applying a number of common analysis techniques, we came to find some similarities in reactions of different manganese complexes with cerium (IV) ammonium nitrate which is a well-known and popular oxidizing agent. Further studies led us to conclude the presence of a special type of nano-dimensioned manganese oxide in the reactions of a number of complexes within the water oxidation process. Briefly put forth, we postulate that these complexes break down initially to form special manganese oxide species which subsequently take part in the water oxidation process by a unique mechanism," Dr. Mohammad Mahdi Najafpour, a member of the research group, explained.
The results of this research shed light on understanding the mechanism of water oxidation and enable better design of water oxidizing catalysts. In addition, other researchers may find the mentioned work to their interest as it gives novel and useful information on choice of the compound and the water oxidation mechanism in the presence of manganese complexes.
An elaborate report discussing the details of this research work is due to appear in Dalton Transactions (DOI:10.1039/C2DT30965C) soon this year. 
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Chemistry
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
    Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Energy
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Solar/Photovoltaic
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
    Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
    Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||