Home > Press > UT Arlington micropunching lithography project could yield pliable cell phone, laptops
Abstract:
UT Arlington professor Cheng Luo can envision the day that a flexible cell phone could be folded and placed in a pocket like a billfold or that a laptop computer could be rolled up and stored.
Through an active $300,000 National Science Foundation grant, the mechanical and aerospace engineeringprofessor is developing a process called "micropunching lithography." The process is used to create lightweight, low-cost and more flexible polymer-based devices that have the potential to replace silicon-based materials commonlyused in computers and other electronic devices.
Luo's work was recently published in the June 2012 North America edition of International Innovation. His project has garnered three grants totaling about $700,000.
"Practical applications for these microstructures could be in everything from glucose monitoring and delivery of chemicals in treating water pipes," Luo said.
Micropunching lithography involves two operations: cutting and drawing. Luo said in these two operations polymers are deformed using rigid and soft molds, respectively, creating desired polymer channels and sidewalls that can be used for detection and delivery.
Erian Armanios, chairman of the Mechanical and Aerospace Engineering Department, said Luo's process has diverse applications.
"These novel microstructures of conducting polymers could be used as sensors and actuators for engineering and biomedical applications," Armanios said.
Luo joined UT Arlington in 2007 and has focused his research on mechanics, microfabrication and nanofabrication, particularly with biomedical applications.
####
About University of Texas at Arlington
His research is representative of the work under way at The University of Texas at Arlington, a comprehensive research institution of nearly 33,500 students in the heart of North Texas. 
For more information, please click here
Contacts:
Herb Booth
817-272-7075
KRISTIN SULLIVAN • Assistant Vice President for Media Relations
The University of Texas at Arlington
Box 19137 • 701 S. Nedderman Drive
Arlington, TX 76019-0137
Ph. 817-272-5364
FAX 817-272-2755
Cell 817-706-9811
Copyright © University of Texas at Arlington
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Flexible Electronics
    Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
    Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    New discovery aims to improve the design of microelectronic devices September 13th, 2024
    Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
    Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
    Simple ballpoint pen can write custom LEDs August 11th, 2023
    Disposable electronics on a simple sheet of paper October 7th, 2022
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||