Home > Press > UK research paves way to a scalable device for quantum information processing: A groundbreaking new device from the National Physical Laboratory could help to usher in the long-awaited era of quantum computers
Semi-conductor chip used by scientists at the National Physcial Laboratory to test the first scalable 3D ion microtrap.
Credit: National Physical Laboratory |
Abstract:
Researchers at NPL have demonstrated for the first time a monolithic 3D ion microtrap array which could be scaled up to handle several tens of ion-based quantum bits (qubits). The research, published in Nature Nanotechnology, shows how it is possible to realise this device embedded in a semiconductor chip, and demonstrates the device's ability to confine individual ions at the nanoscale.
As the UK's National Measurement Institute, NPL is interested in how exotic quantum states of matter can be used to make high precision measurements, of for example, time and frequency, ever more accurate. This research, however, has implications wider than measurement. The device could be used in quantum computation, where entangled qubits are used to execute powerful quantum algorithms. As an example, factorisation of large numbers by a quantum algorithm is dramatically faster than with a classical algorithm.
Scalable ion traps consisting of a 2D array of electrodes have been developed, however 3D trap geometries can provide a superior potential for confining the ions. Creating a successful scalable 3D ion trapping device is based on maintaining two qualities - the ability to scale the device to accommodate increasing numbers of atomic particles, whilst preserving the trapping potential which enables precise control of ions at the atomic level. Previous research resulted in compromising at least one of these factors, largely due to limitations in the manufacturing processes.
The team at NPL has now produced the first monolithic ion microtrap array which uniquely combines a near ideal 3D geometry with a scalable fabrication process - a breakthrough in this field. In terms of elementary operating characteristics, the microtrap chip outperforms all other scalable devices for ions.
Using a novel process based on conventional semiconductor fabrication technology, scientists developed the microtrap device from a silica-on-silicon wafer. The team were able to confine individual and strings of up to 14 ions in a single segment of the array. The fabrication process should enable device scaling to handle greatly increased numbers of ions, whilst retaining the ability to individually control each of them.
Due to the enormous progress in nanotechnology, the power of classical processor chips has been scaled up according to Moore's Law. Quantum processors are in their infancy, and the NPL device is a promising approach for advancing the scale of such chips for ion-based qubits.
Alastair Sinclair, Principal Scientist, NPL said:
"We managed to produce an essential device or tool, which is critical for state of the art research and development in quantum technologies. This could be the basis of a future atomic clock device, with relevance for location, timing, navigation services or even the basis of a future quantum processor chip based on trapped ions, leading to a quantum computer and a quantum information network."
####
For more information, please click here
Contacts:
Natasha Warren
084-568-01869
Copyright © National Physical Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||