Home > News > Tightening Graphene Like a Drumhead Changes Its Electrical Properties
July 12th, 2012
Tightening Graphene Like a Drumhead Changes Its Electrical Properties
Abstract:
The main preoccupation with graphene research has been trying to impart a band gap to the wonder material. Researchers at the University of Wisconsin-Milwaukee were able to get graphene to behave like a semiconductor earlier this year by making a new variety of graphene dubbed "graphene monoxide". But now researchers at National Institute of Standards and Technology (NIST) and the University of Maryland discovered they could do it by just treating graphene like a drumhead.
The research was published in the journal Science under the title "Electromechanical Properties of Graphene Drumheads" and is available with a subscription.
Source:
spectrum.ieee.org
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Laboratories
Blog sites
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016
Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016
Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |