Home > Press > Iranian Researchers Find New Application for Nanosilica as Dye Adsorbent
Abstract:
Researchers at Iran University of Science and Technology succeeded in improving the ability of nanosilica to adsorb acidic dyes by functionalizing porous nanosilica.
Thousands of tons of various dyes are annually produced all over the world, from which 15% are wasted during the production or painting process, according to the statistics.
The wasted parts of dyes usually permeate to water sources and damage the environment. The dyes are required to be eliminated in order to purify the polluted water. Various methods have so far been proposed in order to remove the dyes, among which the adsorption method is more cost-effective.
In their studies, the researchers used porous nanosilica functionalized by ethylenediamine (SBA-3/EDA), aminopropyl (SBA-3/APTES), and pentaethylenehexamine (SBA-3/PEHA). Various investigations were carried out on such materials, suggesting that their adsorption capabilities were as follows: SBA-3/PEHA > SBA3/APTES > SBA-3/EDA > SBA-3.
According to the studies, SBA-3/PEHA was identified as a very good adsorbent of acidic dyes. The adsorption mechanism of such nanomaterials is based on the electrostatic attraction and hydrogen bond created between the adsorbent surface and acidic dyes.
The results of the observations showed that the adsorption of SBA-3/PEHA decreased when the pH value increased. The optimum temperature for adsorption process was reported to be 20°C. The amount of adsorption decreases when the temperature increases.
The research has been published in detail in July 2012 in Dyes and Pigments.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Water
Taking salt out of the water equation October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |