Home > Press > UIC Chemist Explores Nanotechnology in Search of Cheaper Solar Cells
![]() |
Abstract:
Luke Hanley is a big believer in harnessing solar energy to produce electricity. Doing it more efficiently is his goal.
"If you could make solar cells cheaper and more efficient, then you could think about putting them on a much wider variety of surfaces," said Hanley, professor and head of chemistry at the University of Illinois at Chicago.
"There's only a certain amount of energy that falls from the sun per square meter. You can't increase that amount of energy, but you can make it less expensive to capture it," he said.
Hanley received a $390,000 grant from the National Science Foundation to test methods of coating solar panel films using nanoparticles from a chemical group called metal chalcogenides. The inexpensive films could be wrapped over everything from vehicles to buildings to gain maximum sunshine exposure and produce electricity.
Chalcogenides are fairly abundant, relatively cheap, and don't contain toxic elements like cadmium or tellurium, which are often used in solar cells.
"Using less expensive, less toxic materials -- and using processes where you could coat inexpensively and not use much of the material -- could make these solar cells more viable," Hanley said.
Working with Igor Bolotin, research assistant professor of chemistry, and graduate students Mike Majeski and Doug Pleticha, Hanley developed a method for depositing metal chalcogenide nanoparticles by cluster beam deposition. The process uses a magnetically confined electrical discharge of argon gas ions to knock metal atoms into the gas phase and react with hydrogen sulfide or hydrogen selenide. The metal-sulfide or metal-selenide then condenses into nano-sized clusters that land on a surface to produce the film.
"If you can do everything from the gaseous deposition stage, you might make the process less expensive," Hanley said. "You also may make a novel material that has a better efficiency."
Hanley and his coworkers will evaluate the electrical properties of these new films and study how they respond to light. He thinks that using different chemicals for nanoparticle-embedded solar films could create new products some two to three times more efficient than products now on the market, making solar energy more competitive.
But Hanley noted there are other factors to consider besides price.
"Fossil fuels will always have an associated environmental cost," he said, while the sun does not.
"So, there's a great long-term interest in solar energy."
####
For more information, please click here
Contacts:
Paul Francuch
(312) 996-3457
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Solar/Photovoltaic
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||