Home > Press > Switchable nano magnets: Research group at Kiel University switches magnetism of individual molecules
![]() |
| Computer graphic of the spin-crossover molecule that was used for the experiments on gold surface and the STM images of its different magnetic states Picure & copyright: Holger Naggert & Thiruvancheril Gopakumar |
Abstract:
Using individual molecules instead of electronic or magnetic memory cells would revolutionise data storage technology, as molecular memories could be thousand-fold smaller. Scientists of Kiel University took a big step towards developing such molecular data storage. They succeeded in selectively switching on and off the magnetism of individual molecules, so-called spin-crossover complexes, by electrons. The interdisciplinary study is part of the Collaborative Research Centre 677 "Functions by Switching", which is funded by the German Research Foundation (DFG). The results prove that it is technically possible to store information using molecules. The study will be published on June 25th in the German science magazine "Angewandte Chemie" (Applied Chemistry).
"In principle information may be stored in a single molecule. However, techniques that would make such an approach feasible are becoming available just now", explains project leader Professor Richard Berndt of the Institute of Experimental and Applied Physics at Kiel University. Since the 1980s scientists are able to image individual molecules on surfaces with scanning tunnelling microscopes, he continues. Current research aims at controlling the characteristics of single molecules in order to facilitate future technical applications. The Collaborative Research Centre 677 "Functions by Switching" at Kiel University is a large-scale project engaged in such investigations, which aim at constructing molecular machines.
The current study is focused on the magnetism of molecules. Using a scanning tunnelling microscope Dr. Thiruvancheril Gopakumar, who carried out the study, was able to switch individual molecules between two magnetic states. Despite their dense packing in a molecular layer he was able to target individual molecules for switching. "Many research groups are striving to control the magnetic characteristics of molecules. Gopakumar's studies have taken us one step ahead", says Berndt.
The molecules (spin-crossover complexes) were synthesised at the Institute of Inorganic Chemistry at Kiel University. "Even though it took us a long time to find adequate molecules, we are very pleased with the outcome", states Professor Felix Tuczek, head of the research group "Inorganic Molecular Chemistry". The next step will be to adapt the molecules in a way that would allow scientists to switch them with light instead of electrons and at higher temperatures.
####
For more information, please click here
Contacts:
Prof. Dr. Richard Berndt
Institut für Experimentelle und Angewandte Physik
phone: +49 (431) 880-3946
Christian-Albrechts-Universität zu Kiel
Press and Communication Services
Dr. Boris Pawlowski
Text: Stefanie Maack
Address: D-24098 Kiel
phone: +49 (0431) 880-2104
fax: +49 (0431) 880-1355
Copyright © Kiel University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
Further information about CRC 677:
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Memory Technology
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||