Home > Press > Gold Nanoantennas boost the Emission Rate of Conjugated Polymers
![]() |
Abstract:
Resonant plasmonic nanoantennas have been used to control the emission of light to various degrees, as the large local density of optical states in the near-field of the nanoantenna influences the emission properties. Theoretical studies have proposed to incorporate a semiconductor material into a metal nanoantenna, in analogy to the feed element in radio frequency antennas, in order to modify the semiconductor optical properties. Until now, however, the realization of such an integrated metal-semiconductor nanoantenna remained challenging.
D. O'Carroll (Rutgers University) and co-workers have developed a novel fabrication process for metal-polymer-metal split-dipole nanoantenna heterostructures by sequential electrodeposition and thermal evaporation. The resonant scattering response of such antennas can be tuned to the polymer emission band by controlling the nanoantenna length. Using this approach, the radiative emission rate of poly(3-hexylthiophene) was enhanced by a factor of up to 29, in experiment, and 550 for the ideal case. Especially organic conjugated polymers such as polythiophenes, which exhibit high carrier mobilities but possess relatively poor luminescence properties, would benefit from incorporation into such plasmonic nanoantennas. This work demonstrates clearly that integrated metal-polymer-metal nanoantennas could enable a new generation of high-performance conjugated polymer optoelectronic devices.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Link to the original paper on Wiley Online Library:
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Chip Technology
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Discoveries
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |