Home > Press > Silkmoth inspires novel explosive detector
![]() |
© Fabien Schnell/NS3E Overall view of a microcantilever nanostructured by aligned titanium dioxide nanotubes. |
Abstract:
Imitating the antennas of the silkmoth, Bombyx mori, to design a system for detecting explosives with unparalleled performance is the feat achieved by a team from the "Nanomatériaux pour Systèmes sous Sollicitations Extrêmes" unit (CNRS / Institut Franco-Allemand de Recherches de Saint-Louis), in collaboration with the Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse (CNRS / Université de Strasbourg). Made up of a silicon microcantilever bearing nearly 500,000 aligned titanium dioxide nanotubes, this device is capable of detecting concentrations of trinitrotoluene (TNT) of around 800 ppq (1) (i.e. 800 molecules of explosive per 10^15 molecules of air), thereby improving one thousand-fold the detection limit attainable until now. This innovative concept could also be used to detect drugs, toxic agents and traces of organic pollutants. This work is published on 29 May 2012 in the journal Angewandte Chemie.
The efficient detection of explosives such as trinitrotoluene (TNT) represents a difficult challenge in terms of security. Indeed, these compounds have very low volatility and it takes extremely sensitive sensors to detect them at a distance. Current systems detect concentrations of around 1 ppb (2) (one molecule per 10^9 molecules of air), but this level of performance can be insufficient to ensure airport security for example. Yet, numerous animals have a sense of smell that can go well below this limit including, for example, the silkmoth (Bombyx mori), capable of reacting to the capture of just a few pheromone molecules. Its antennas are composed of strands of around one millimeter in length, bearing a large of number of sensilla, micrometric sized organs directly connected to the sensory neurons. It is this structure that the researchers sought to imitate.
The system that they have developed comprises a 200-micron long and 30-micron wide silicon microcantilever. This support has been nanostructured with around 500,000 vertically aligned titanium dioxide nanotubes. The role of these nanostructures is to multiply the surface area of the microcantilever by a factor of around one hundred and to proportionally increase the chances of capturing the molecules being searched for. By making the microcantilever vibrate, it is possible to determine whether the ambient air contains traces of TNT and if these molecules have been captured by the device. In fact, the microcantilever has a particular resonance frequency that is modified in a specific manner when it absorbs molecules of explosive.
To test the performance of this device, the researchers released very small quantities of TNT in a controlled manner. In this way, there were able to establish that the sensitivity of the device was 800 ppq (800 molecules per million billion molecules (10^15)). No current device is able to detect such low concentrations of explosives. These performance levels are similar to those of trained sniffer dogs.
Research and development work is still necessary before an easy-to-use device based on these nanostructured levers can be obtained. One of the next steps is to design a device capable of specifically recognizing the type of explosive absorbed. The scientists already hope to adapt these microcantilevers to the detection of other explosives, such as pentrite, which could pose security problems in Europe. Furthermore, this method could also be used to detect various drugs which, like explosives, have very low volatility. In environmental terms, this bio-inspired device could make it possible to measure infinitesimal traces of pollutants such as volatile organic compounds, which have become a major health issue.
1) Ppq (parts per quadrillion) is used to measure the abundance of an element.
2) Ppb (parts per billion) represents a concentration of around 10^-9.
Full bibliographic informationBio-Inspired Nanostructured Sensor for the Detection of Ultralow Concentrations of Explosives. D. Spitzer, T. Cottineau, N. Piazzon, S. Josset, F. Schnell, S. N. Pronkin, E. R. Savinova, and V. Keller. Angewandte Chemie. 29 mai 2012.
####
For more information, please click here
Contacts:
Researchers
Denis Spitzer
T +33 (0)3 89 69 50 75
Valérie Keller
T +33 (0)3 68 85 27 36
CNRS press officer
Priscilla Dacher
T +33 (0)1 44 96 46 06 l
Julien Guillaume
+ 33 1 44 96 51 51
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Homeland Security
The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023
Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021
Highly sensitive dopamine detector uses 2D materials August 7th, 2020
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |