Home > News > Solid-State Dye-Sensitized Solar Cell Matches Performance of Grätzel Cell
May 26th, 2012
Solid-State Dye-Sensitized Solar Cell Matches Performance of Grätzel Cell
Abstract:
POSTED BY: Dexter Johnson
In the past, I have tried to dispel the myth that nanotechnology could be waved over alternative energy applications to make them suddenly much more economically viable than they have been. In these efforts, I have even gone so far as to question the reasoning of Nobel Laureates in Economics on why we are not further along in the development of photovoltaics.
This is not to say that nanotechnology is not improving various alternative energy solutions, in particular photovoltaics. But the process of bringing these technologies to market is much slower than many people seem willing to tolerate and their announcements should be taken with a grain of salt...and patience.
So, it is with some cautious optimism I alert you to research coming out of Northwestern University in which the researchers claim to have developed a new type of solar cell that has all the benefits of the Grätzel cell (or dye-sensitized solar cell (DSSC)) without the short life expectancy.
Source:
spectrum.ieee.org
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Blog sites
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016
Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016
Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |