Home > Press > Ferroelectric oxides do the twist
Advanced Materials Engineered electric polarizations are indicated by the gray arrows, a "twisting-like" distortion of the corner-connected oxygen octahedral that is common to many perovskite oxides. First-principles calculations reveal that carefully designed atomic layering, represented by alternating gold and magenta spheres forming an atomic-scale superlattice, allows the octahedral rotations to induce ferroelectricity. |
Abstract:
Some materials, by their nature, do what we want them to do -- notably, the ubiquitous, semiconducting silicon found in almost every electronic device. But sometimes, naturally occurring materials need a little nudge -- or in the case of recent Cornell research, a twist -- to make them useful.
Assistant professor of applied and engineering physics Craig Fennie and Drexel University's James Rondinelli have published a method for turning a class of ceramic materials called perovskites into a material that's ferroelectric. The work was published April 10 by Advanced Materials and also will be featured on the printed journal's inside cover.
Ferroelectricity is a property in which a spontaneous electric polarization can be flipped by applying a small electric field, useful for low-power memory and switching devices. Traditional ferroelectric mechanisms, however, are often chemically incompatible with such phenomena as ferromagnetism, limiting their use in new types of multifunctional devices.
The researchers' theory-only work, which employed density functional calculations, concluded that ferroelectricity in perovskites can be realized if their atomic structures are manipulated at the nanometer length scale and by slicing them only a few atoms thin, letting the natural twisting of their corner-shared octahedra -- the basic structural unit of perovskite crystals -- do the rest.
The researchers' engineered electric polarizations are the result of stacking chemically different perovskites into atomically thin striped-patterns, which allow their normal rotational patterns to induce ferroelectricity.
"In the past, those rotations and tilts didn't do anything, but by combining them in this way, they can be coupled to an electric field through polarization," Fennie said. "This is the first step in the broad field of using rotations that couple to an applied electric field to control the properties of materials."
Fennie and Rondinelli transformed their theoretical conclusions into experimental guidelines for chemists and materials scientists, with the goal of enabling ferroelectric materials by design.
"The strategy we applied in this work provides a framework for rapid materials discovery of functional properties in a variety of crystal families in advance of materials synthesis," Rondinelli said.
According to Fennie, the work illustrates that theory will play a pivotal role in identifying new material systems for integration into next-generation technologies; theoretical studies of materials are no longer limited to after-the-fact analysis of experimental data.
The research was supported by the U.S. Department of Energy, Basic Energy Sciences.
####
For more information, please click here
Contacts:
Anne Ju
Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206
Copyright © Cornell University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||