Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lubricating with Nanometer-Sized Silver

Image: Workshop and DIY / FreeDigitalPhotos.net
Image: Workshop and DIY / FreeDigitalPhotos.net

Abstract:
The ever-increasing demands for energy efficiency and high temperature operation of machines require a careful consideration of lubricants for optimal performance. Tribological components like bearings and gears have driven the continual sophistication of lubricating materials and the development of additives which enhance their performance.

Lubricating with Nanometer-Sized Silver

Germany | Posted on March 22nd, 2012

These additives are designed to enhance specific attributes of lubricant properties, such as viscosity, performance at particular temperatures, friction and wear reduction, rust and corrosion prevention, or oxidative stability. Conventional oils and greases undergo severe degradation at elevated temperatures, whereas solid lubricants can function at far higher temperatures.

Commonly, graphite and MoS2, which have been studied for decades, are used as lubricant additives, but nanometer-sized particles have more recently made an appearance. Nanoparticles are particularly effective because they form more stable dispersions in oils than do larger particles.

To get an efficient and cost-effective system, Christina P. Twist and co-workers from the Northwestern University in Evanston, Illinois (USA), and the University of Jordan in Amman (Jordan) synthesized two silver complexes and added them to engine oil at various concentrations. Silver is a relatively soft metal and has been previously investigated as a solid lubricant in the form of coatings.

The researchers report on the thermolytic and tribological properties of these complexes as they are transformed to lubricious silver metal. They evaluated the performance of these complexes as lubricant additives via pin-on-disk friction tests and wear scar measurements.

Results of the friction tests and wear measurements indicate a significant reduction in wear and little change in friction. The improved wear performance is attributed to the thermolysis and deposition of the silver-based complexes in the wear scar. However, while the oil and silver complex suspensions were mixed thoroughly before testing for at least 15 min to achieve as homogeneous distribution as possible, some larger crystallites were likely present. This problem can be remedied in future using more lipophilic ligands.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project