Home > Press > Crann researchers develop new material that could transform flat screen TV and solar cell technology
Abstract:
Researchers at CRANN, the Science Foundation Ireland funded nanoscience institute based in Trinity College Dublin (TCD), have discovered a new material that could transform the quality, lifespan and efficiency of flat screen computers, televisions and other devices. The research team was led by Prof Igor Shvets, a CRANN Principal Investigator who has successfully launched and sold two spin out companies from TCD and who is involved in the Spirit of Ireland energy project. A patent application protecting the new material was filed by TCD.
Commenting on the research, Prof Igor Shvets said, "This is an exciting development with a range of applications and we are hopeful this initial research will attract commercial interest in order to explore its industrial use. The new material could lead to innovations such as window-integrated flat screens and to increase the efficiency of certain solar cells, thus significantly impacting on the take-up of solar cells, which can help us to reduce carbon emissions."
Commenting on the research, Dr. Diarmuid O'Brien, Executive Director of CRANN said, "Ireland is one of the leading countries in the world for nanoscience research, a discipline which is closely linked with technology improvements. We are working with leading companies such as Intel and HP in this sphere and helping them to improve their products using our innovative research methods. This new material could be of real significance to our industry partners. I look forward to seeing Professor Shvets and his team develop this research further and realising its commercial potential."
Devices that the new material could be used with such as solar cells, flat screen TVs, computer monitors, LEDs all utilise materials that can conduct electricity and at the same time are see-through. These devices currently use transparent conducting oxides, which are a good compromise between electrical conductivity and optical transparency. They all have one fundamental limitation: they all conduct electricity through the movement of electrons. Such materials are referred to as n-type transparent conducting oxides. Electricity can also be conducted through as p-type materials. Modern day electronics make use of n-type and p-type materials. The lack of good quality p-type transparent conducting oxides, however, led the research team to develop a new material - a p-type transparent conducting oxide.
Professor Shvets' research was recently published in the international science publication, Applied Physics Letters.
*"Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide", E. Arca, K. Fleischer, I. V. Shvets, Applied Physics Letters 99, 111910 (2011).
####
For more information, please click here
Contacts:
College Green, Dublin 2
Central Switchboard: +353 1 896 1000.
Copyright © Trinity College Dublin
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Display technology/LEDs/SS Lighting/OLEDs
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |