Home > Press > Increasing photoconversion efficiency of DSSC
![]() |
| Dr. Gamolwan |
Abstract:
Researchers at the National Nanotechnology Center (NANOTEC), Chulalongkorn University, and Stanford University have successfully synthesis titania nanoparticles and carbon nanotubes (CNT) using hydrothermal process to provide the highest photoconversion efficiency.
"Dye sensitized solar cell (DSSC) has gained much research interest in recent years for its positive characteristics in contributing to renewable energy generator" said Dr. Gamolwan Tumcharern a researcher at NanoSens Lab at NANOTEC. "The ability to synthesize hybridized material of titanate nanoparticles and CNT using hydrothermal process has greatly increased the photoconversion efficiency of DSSC".
Because DSSC could potentially be made of low-cost materials, and does not require elaborate apparatus to manufacture, this cell is technically attractive as a renewable energy generator. Likewise, manufacturing DSSC can be significantly less expensive than older solid-state cell designs. It can also be engineered into flexible sheets and is mechanically robust, requiring no protection from minor events like hail or tree strikes. For this reason, the ability to increase the efficiency of photoconversion is of most interest to the energy sector.
The researchers reported their work in a paper published by Materials Research Bulletin.
Collaborators on this research included the Faculty of Engineering at Chulalongkorn University, Thailand, Department of Energy Resource Engineering at Stanford University, USA, and NanoSens Lab at National Nanotechnology Center, Thailand.
####
For more information, please click here
Contacts:
Ramjitti Indaraprasirt
Manager
Public Relations Section
NANOTEC
02-564-7100 ext: 6617
Copyright © NANOTEC
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Solar/Photovoltaic
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||