Home > Press > Researchers provide new insight into how metals fail
![]() |
Warner |
Abstract:
The eventual failure of metals, such as the aluminum in ships and airplanes, can often be blamed on breaks, or voids, in the material's atomic lattice. They're at first invisible, only microns in size, but once enough of them link up, the metal eventually splits apart.
Cornell engineers, trying to better understand this process, have discovered that nanoscale voids behave differently than the larger ones that are hundreds of thousands of atoms in scale, studied through traditional physics. This insight could lead to improved ability to predict how cracks grow in metals, and how to engineer better materials.
Graduate student Linh Nguyen and Derek Warner, assistant professor of civil and environmental engineering, reported their findings in the journal Physical Review Letters, Jan. 20. Using new atomistic simulation techniques, they concluded that the smallest voids in these materials, those having nanometer dimensions, don't contribute in the same way as microscale voids do in material failure at ordinary room temperatures and pressures.
When metals fail, a physical phenomenon known as plasticity often occurs, permanently deforming, or changing the shape of the material. Previously, it was theorized that both nanometer and microscale voids grow via plasticity as the material fails, but the new research says otherwise.
"While this was something amenable to study with traditional atomistic modeling approaches, the interpretation of previous results was difficult due to a longstanding challenge of time scaling," Warner said. "We've come up with a technique to better address that."
Nguyen and Warner's work is supported by the Office of Naval Research, which has particular interest in the use of aluminum and other lightweight, durable metals in high-performance ship structures.
####
For more information, please click here
Contacts:
Media Contact:
John Carberry
(607) 255-5353
Cornell Chronicle:
Anne Ju
(607) 255-9735
Copyright © Cornell University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Marine/Watercraft
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
Quantum tech in space? Scientists design remote monitoring system for inaccessible quantum devices February 11th, 2022
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Aerospace/Space
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |