Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New form of graphene could prevent electronics from overheating and revolutionize thermal management

Abstract:
A new form of graphene created by researchers at The University of Texas at Austin could prevent laptops and other electronics from overheating, ultimately, overcoming one of the largest hurdles to building smaller and more powerful electronic devices.

New form of graphene could prevent electronics from overheating and revolutionize thermal management

Austin, TX | Posted on January 9th, 2012

The research team, which includes colleagues at The University of Texas at Dallas, the University of California-Riverside and Xiamen University in China, published its findings online today in the Advance Online Publication of Nature Materials. The study will also appear in the print journal of Nature Materials.

Led by Professor Rodney S. Ruoff in the Cockrell School's Department of Mechanical Engineering and the Materials Science and Engineering Program, the research demonstrates for the first time that a type of graphene created by the University of Texas researchers is 60 percent more effective at managing and transferring heat than normal graphene.

"This demonstration brings graphene a step closer to being used as a conductor for managing heat in a variety of devices. The potential of this material, and its promise for the electronic industry, is very exciting," said Ruoff, a physical chemist and Cockrell Regents Family Chair, who has pioneered research on graphene-based materials for more than 12 years.

The findings could have a significant impact on the future development of semiconductor electronics. As silicon transistors - foundations of modern-day electronics - are built smaller and faster, more effective heat removal techniques are needed to remove heat dissipated by the transistors as they operate. The latter has become a crucial issue for the electronics industry - one that has spurred a scientific race to develop and find materials more efficient at conducting heat than the materials currently used.

Graphene, an atom-thick layer of carbon, has shown great promise at doing so, and the research findings published today demonstrate for the first time that not only graphene - but the type of graphene used - can play a significant role in how effectively heat is transferred.

Using a laser to both heat and take measurements of a single-layer of graphene, the researchers found that a type of graphene created by Ruoff and other University of Texas researchers is better than any other material tested to date at dissipating heat.

Whereas naturally occurring carbon is found at concentrations of 98.9 percent 12C (carbon) and 1.1 percent 13C, the graphene created at The University of Texas at Austin was made of isotopically pure carbon, 99.99 percent 12C.

"Because self-heating of fast and densely packed devices deteriorates their performance, graphene's ability to conduct heat well will be very helpful in improving them," said Alexander Balandin, a professor of Electrical Engineering, chair of Materials Science and Engineering at the University of California Riverside and a corresponding author of the research paper. "Initially, graphene would likely be used in some niche applications, such as thermal interface materials for chip packaging or transparent electrodes in photovoltaic solar cells or flexible displays. But, in a few years, the uses of graphene will be diverse, broad and far-reaching because the excellent heat conduction properties of this material are beneficial for all its proposed electronic applications."

The National Science Foundation, W.M. Keck Foundation and the Office of Naval Research funded the University of Texas research team. The team includes Ruoff, graduate student Columbia Mishra, post-doctoral fellow Shanshan Chen and former post-doctoral fellow Weiwei Cai, who is now a professor at the Xiamen University in China.

####

For more information, please click here

Contacts:
Melissa Mixon

512-471-2129

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project