Home > Press > New form of graphene could prevent electronics from overheating and revolutionize thermal management
Abstract:
A new form of graphene created by researchers at The University of Texas at Austin could prevent laptops and other electronics from overheating, ultimately, overcoming one of the largest hurdles to building smaller and more powerful electronic devices.
The research team, which includes colleagues at The University of Texas at Dallas, the University of California-Riverside and Xiamen University in China, published its findings online today in the Advance Online Publication of Nature Materials. The study will also appear in the print journal of Nature Materials.
Led by Professor Rodney S. Ruoff in the Cockrell School's Department of Mechanical Engineering and the Materials Science and Engineering Program, the research demonstrates for the first time that a type of graphene created by the University of Texas researchers is 60 percent more effective at managing and transferring heat than normal graphene.
"This demonstration brings graphene a step closer to being used as a conductor for managing heat in a variety of devices. The potential of this material, and its promise for the electronic industry, is very exciting," said Ruoff, a physical chemist and Cockrell Regents Family Chair, who has pioneered research on graphene-based materials for more than 12 years.
The findings could have a significant impact on the future development of semiconductor electronics. As silicon transistors - foundations of modern-day electronics - are built smaller and faster, more effective heat removal techniques are needed to remove heat dissipated by the transistors as they operate. The latter has become a crucial issue for the electronics industry - one that has spurred a scientific race to develop and find materials more efficient at conducting heat than the materials currently used.
Graphene, an atom-thick layer of carbon, has shown great promise at doing so, and the research findings published today demonstrate for the first time that not only graphene - but the type of graphene used - can play a significant role in how effectively heat is transferred.
Using a laser to both heat and take measurements of a single-layer of graphene, the researchers found that a type of graphene created by Ruoff and other University of Texas researchers is better than any other material tested to date at dissipating heat.
Whereas naturally occurring carbon is found at concentrations of 98.9 percent 12C (carbon) and 1.1 percent 13C, the graphene created at The University of Texas at Austin was made of isotopically pure carbon, 99.99 percent 12C.
"Because self-heating of fast and densely packed devices deteriorates their performance, graphene's ability to conduct heat well will be very helpful in improving them," said Alexander Balandin, a professor of Electrical Engineering, chair of Materials Science and Engineering at the University of California Riverside and a corresponding author of the research paper. "Initially, graphene would likely be used in some niche applications, such as thermal interface materials for chip packaging or transparent electrodes in photovoltaic solar cells or flexible displays. But, in a few years, the uses of graphene will be diverse, broad and far-reaching because the excellent heat conduction properties of this material are beneficial for all its proposed electronic applications."
The National Science Foundation, W.M. Keck Foundation and the Office of Naval Research funded the University of Texas research team. The team includes Ruoff, graduate student Columbia Mishra, post-doctoral fellow Shanshan Chen and former post-doctoral fellow Weiwei Cai, who is now a professor at the Xiamen University in China.
####
For more information, please click here
Contacts:
Melissa Mixon
512-471-2129
Copyright © University of Texas at Austin
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |