Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ALD to Enable Novel, High Efficiency Silicon Nanorod Solar Cells

Abstract:
Picosun Oy, Finland-based global manufacturer of state-of-the-art Atomic Layer Deposition (ALD) equipment, reports successful final results of the European Union 7th Framework Programme funded research project ROD-SOL. The goal of this multinational, inter-European, three years (2009-2011) project combining the efforts of both scientific and industrial partners has been to dramatically increase the efficiency of solar cells and reduce the costs of their manufacturing. This has been achieved with novel, innovative, silicon nanorod based concept. The amount of active photovoltaic material (Si) can be significantly reduced by growing the light-trapping nanorod "forests" (thickness from < 1́m to a few ́m at most) on cheaper substrates such as glass or flexible foils. This has led to already promising over 9 % energy conversion efficiencies with very good long-term stabilities of cells. Due to their effectively 3D geometry, the nanorod forests have high active surface area which enables efficient light absorption - much more efficient than in convenient 2D thin film solar cells. Also, the location of the p-n junction much closer to the surface than in normal solar cells radically improves the minority carrier charge transport and thus the amount of electricity that can be extracted from the cell.

ALD to Enable Novel, High Efficiency Silicon Nanorod Solar Cells

Espoo, Finland | Posted on January 2nd, 2012

Due to the micrometer/sub-micrometer dimensions of the nanorod forests (dense packing, rod diameters typically few hundreds of nm and lengths < 1 ́m) ALD has proven to be ideal technique for manufacturing some of the most crucial cell components. To prevent recombination losses in the active photovoltaic layer and thus cell efficiency decrease, a recombination barrier i.e. passivation layer needs to be coated on the rods' surface. An ultrathin ALD-deposited Al2O3 film serves ideally this purpose, and the gas-phase, surface-controlled and self-limiting nature of the ALD process ensures that even the deepest and narrowest between-the-rods nooks and crannies will be reliably covered with 100 % uniform, conformal and pinhole- and defect-free passivation film. Another central cell component where ALD has shown its indispensability is the transparent conductive oxide (TCO) layer that works as the current collector on the top of the cell. Different TCO deposition methods were
investigated in the course of the project, and ALD turned out to be the ideal method regarding both the TCO film quality and the scalability of the technique, due to Picosun's fast, efficient and easy-to-use HVM (High Volume Manufacturing) batch ALD system, which was developed specifically during the project ROD-SOL.

"Solar photovoltaics still remains one of the fastest growing industries in the world. To enable more efficient utilization of this free, clean energy, the efficiencies of the solar cells have to increase and their manufacturing costs decrease. ROD-SOL's silicon nanorod cell concept shows promising potential to this, and we at Picosun have been especially satisfied of the ALD's central role in realizing this novel, innovative, high efficiency solar electricity converter", states Picosun's Managing Director Juhana Kostamo.

####

About Picosun Oy
Picosun Oy is Finnish, globally operating manufacturer of state-of-the-art ALD systems, representing continuity to almost four decades of dedicated, exclusive ALD reactor design and manufacturing. Picosun’s global headquarters are located in Espoo, Finland, its production facilities in Masala, Kirkkonummi, and its US headquarters in Detroit, Michigan. PICOSUN™ ALD tools are chosen for production by various industries across four continents. Picosun Oy is a part of Stephen Industries Inc. Oy.

For more information, please click here

Contacts:
Mr. Juhana Kostamo
Phone: +358 50 321 1955
Fax: +358 9 297 6116

Copyright © Picosun Oy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project