Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers discover a way to significantly reduce the production costs of fuel cells

Abstract:
Researchers at Aalto University in Finland have developed a new and significantly cheaper method of manufacturing fuel cells. A noble metal nanoparticle catalyst for fuel cells is prepared using atomic layer deposition (ALD).

Researchers discover a way to significantly reduce the production costs of fuel cells

Finland | Posted on December 20th, 2011

This ALD method for manufacturing fuel cells requires 60 per cent less of the costly catalyst than current methods.

- This is a significant discovery, because researchers have not been able to achieve savings of this magnitude before with materials that are commercially available, says Docent Tanja Kallio of Aalto University.

Fuel cells could replace polluting combustion engines that are presently in use. However, in a fuel cell, chemical processes must be sped up by using a catalyst. The high price of catalysts is one of the biggest hurdles to the wide adoption of fuel cells at the moment.

The most commonly used fuel cells cover anode with expensive noble metal powder which reacts well with the fuel. By using the Aalto University researchers' ALD method, this cover can be much thinner and more even than before which lowers costs and increases quality.

With this study, researchers are developing better alcohol fuel cells using methanol or ethanol as their fuel. It is easier to handle and store alcohols than commonly used hydrogen. In alcohol fuel cells, it is also possible to use palladium as a catalyst.

The most common catalyst for hydrogen fuel cells is platinum, which is twice as expensive as palladium. This means that alcohol fuel cells and palladium will bring a more economical product to the market.

Fuel cells can create electricity that produces very little or even no pollution. They are highly efficient, making more energy and requiring less fuel than other devices of equal size. They are also quiet and require low maintenance, because there are no moving parts.

In the future, when production costs can be lowered, fuel cells are expected to power electric vehicles and replace batteries, among other things. Despite their high price, fuel cells have already been used for a long time to produce energy in isolated environments, such as space crafts. These results are based on preliminary testing with fuel cell anodes using a palladium catalyst. Commercial production could start in 5-10 years.

This study was published in the Journal of Physical Chemistry C. The research has been funded by Aalto University's MIDE research program and the Academy of Finland.

Journal reference: Atomic Layer Deposition Preparation of Pd Nanoparticles on a Porous Carbon Support for Alcohol Oxidation. The Journal of Physical Chemistry C, 2011, 115, 23067-23073. dx.doi.org/10.1021/jp2083659

####

For more information, please click here

Contacts:
Docent Tanja Kallio
School of Chemical Technology, Aalto University

puh. 09 470 225 83

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Fuel Cells

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project