Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A Light Wave of Innovation to Advance Solar Energy: TAU researchers adapt classic antennas to harness more power from the sun

Abstract:
Some solar devices, like calculators, only need a small panel of solar cells to function. But supplying enough power to meet all our daily needs would require enormous solar panels. And solar-powered energy collected by panels made of silicon, a semiconductor material, is limited — contemporary panel technology can only convert approximately seven percent of optical solar waves into electric current.

A Light Wave of Innovation to Advance Solar Energy: TAU researchers adapt classic antennas to harness more power from the sun

New York, NY | Posted on November 13th, 2011

Profs. Koby Scheuer, Yael Hanin and Amir Boag of Tel Aviv University's Department of Physical Electronics and its innovative new Renewable Energy Center are now developing a solar panel composed of nano-antennas instead of semiconductors. By adapting classic metallic antennas to absorb light waves at optical frequencies, a much higher conversion rate from light into useable energy could be achieved. Such efficiency, combined with a lower material cost, would mean a cost-effective way to harvest and utilize "green" energy.

The technology was recently presented at Photonics West in San Francisco and published in the conference proceedings.

Receiving and transmitting green energy

Both radio and optical waves are electromagnetic energy, Prof. Scheuer explains. When these waves are harvested, electrons are generated that can be converted into electric current. Traditionally, detectors based on semiconducting materials like silicon are used to interface with light, while radio waves are captured by antenna.

For optimal absorption, the antenna dimensions must correspond to the light's very short wavelength — a challenge in optical frequencies that plagued engineers in the past, but now we are able to fabricate antennas less than a micron in length. To test the efficacy of their antennas, Prof. Scheuer and his colleagues measured their ability to absorb and remit energy. "In order to function, an antenna must form a circuit, receiving and transmitting," says Prof. Scheuer, who points to the example of a cell phone, whose small, hidden antenna both receives and transmits radio waves in order to complete a call or send a message.

By illuminating the antennas, the researchers were able to measure the antennas' ability to re-emit radiation efficiently, and determine how much power is lost in the circuit — a simple matter of measuring the wattage going in and coming back out. Initial tests indicate that 95 percent of the wattage going into the antenna comes out, meaning that only five percent is wasted.

According to Prof. Scheuer, these "old school" antennas also have greater potential for solar energy because they can collect wavelengths across a much broader spectrum of light. The solar spectrum is very broad, he explains, with UV or infrared rays ranging from ten microns to less than two hundred nanometers. No semiconductor can handle this broad a spectrum, and they absorb only a fraction of the available energy. A group of antennas, however, can be manufactured in different lengths with the same materials and process, exploiting the entire available spectrum of light.

When finished, the team's new solar panels will be large sheets of plastic which, with the use of a nano-imprinting lithography machine, will be imprinted with varying lengths and shapes of metallic antennas.

Improving solar power's bottom line

The researchers have already constructed a model of a possible solar panel. The next step, says Prof. Scheuer, is to focus on the conversion process — how electromagnetic energy becomes electric current, and how the process can be improved.

The goal is not only to improve the efficiency of solar panels, but also to make the technology a viable option in terms of cost. Silicon is a relatively inexpensive semiconductor, but in order to obtain sufficient power from antennas, you need a very large panel — which becomes expensive. Green energy sources need to be evaluated not only by what they can contribute environmentally, but also the return on every dollar invested, Prof. Scheuer notes. "Our antenna is based on metal — aluminium and gold — in very small quantities. It has the potential to be more efficient and less expensive."

####

For more information, please click here

Contacts:
George Hunka

212-742-9070

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project