Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breakthrough in low loss high frequency carbon nanotube electronics

Abstract:
A collaboration between researchers at the University of Surrey's Advanced Technology Institute and the Faculty of Mechatronics of Warsaw University of Technology in Poland reports that low electrical loss at frequencies of up to 220 GHz are possible in screen printed carbon nanotube - polymer composites. Producing such low electrical loss materials potentially opens up new types of high frequency large area electronic devices.

Breakthrough in low loss high frequency carbon nanotube electronics

Surrey, UK | Posted on November 9th, 2011

A carbon nanotube (CNT) is a rolled up sheet of graphene that has a diameter of only a few nanometers. This size is equivalent to thousandths of the diameter of a human hair but despite their small size CNTs have outstanding properties such as high strength and an ability to carry a very high electrical current. Building upon previous EPSRC-funded research in carbon nanotube polymer composite electronics, this study, published recently in the American Institute of Physics journal Applied Physics Letters, shows that CNT composites have electrical losses of less than 0.3 dB/mm over a wide frequency range. Embedding CNTs in a polymer, in this case PMMA, allows accurate control of the nanotube content and control over the conductive phase of the composite which was screen printed into coplanar waveguides to produce structures tens of mm in length. Using a screen printing technology allows for ease of scalability for production and relaxes many of the constraints found in high end manufacturing techniques. Possible applications include new types of microwave mixers, phase shifters and antennas.

Dr David Carey from the Advanced Technology Institute of the University of Surrey said: "The success of the research is to be found by employing the unique high frequency electrical characterisation facilities at Surrey to explore electrical conduction in large area carbon nanotube based composites. Understanding what controls the conduction at the nanometer scale in these new materials can lead to the development of new high frequency carbon nanotube based electronics."

Professor Ravi Silva, Director of the Advanced Technology Institute at Surrey, said "This research shows the transformational benefits that can happen of bringing high quality specialised experimental facilities to tackle some of the key problems in modern nanotechnology and electronics. The research offers the potential for new applications of carbon nanotubes."

####

For more information, please click here

Contacts:
David Carey


Media Enquiries

Peter La
Press Office
University of Surrey
Tel: +44 (0)1483 689191

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For further information please see “Electrical performance of carbon nanotube-polymer composites at frequencies up to 220 GHz” by Ali H. Alshehri, Malgorzata Jakubowska, Marcin Sloma, Michal Horaczek, Diana Rudka, Charles Free and J. David Carey, Appl. Phys. Lett., Volume 99, 153109 (2011).

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project