Home > Press > New hybrid carbon material discovered
Abstract:
New hybrid carbon material, which combines both graphene and SWNTs, Graphene Nanoribbons encapsulated into Single-Walled Carbon Nanotubes have been discovered by researchers from Aalto University (Finland) and Umea University.
Carbon nanotubes and graphene materials have attracted enormous interest from a broad range of specialists.
- We came up with the idea to create a novel hybrid material, which combines two most fascinating carbon nanomaterials - single-walled carbon nanotubes and grapheme, says Doctor Albert Nasibulin from Aalto University.
SWNTs have a hollow space inside, which was used in this study as an 1-dimensional chemical reactor. An intriguing property of this space is that chemical reactions occur differently compared to the bulk 3D conditions. Large polyaromatic hydrocarbon molecules (coronene and perylene), which can be imagined as small pieces of graphene, were used as building blocks to produce long and narrow graphene nanoribbons inside the nanotubes.
It was found that the shape of encapsulated graphene nanoribbons can be modified by using different kinds of polyaromatic hydrocarbon molecules. Nanoribbons can be either metallic or semiconductor depending on their width and type. Interestingly, SWNTs can also be metallic, semiconducting (depending on their chirality) or insulating when chemically modified.
This creates enormous potential for a wide range of applications: Now we can prepare in all possible combinations. For example, metallic nanoribbon inside insulating nanotube can be considered as the thinnest insulated nanowire. Nanoribbons can be used directly inside of SWNTs to generate light (e.g. as light emitting diodes), which will easily go through nanotubes and GNRs and by using of existing energy barrier will became a nano-lamp. Semiconducting nanoribbons can be used for transistor or solar cell applications. Metalli-metallic combination is in fact a new kind of coaxial nanocables (widely used as transmitters of radio signals) in nanosize since the nanoribbons are not connected with nanotubes due to hydrogen atoms, which occupy all the edges of nanoribbons.
- Precise control of the width and angle of the graphene nanoribbons will help assembly materials based on graphene with strict control of the band gap. Such control is not possible for a macroscopic graphene, obtained by traditional technology, says Dr. Ilya Anoshkin.
The method of synthesis is very simple, easily scalable and allows to obtain almost 100% filling of tubes with nanoribbons. As it follows from theoretical results included in the paper, graphene nanoribbons should keep their unique properties inside of nanotubes while protected from environment by encapsulation and aligned within bundles of SWNTs.
####
For more information, please click here
Contacts:
Dr Albert Nasibulin
358-503-397-538
Copyright © Aalto University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |