Home > Press > Swedish researcher invents fast switching and printable transistor
![]() |
Abstract:
A fully functional, fast switching and printable transistor in cheap plastic is invented by researcher Lars Herlogsson, Linkoping University in Sweden. All six articles in his doctoral thesis were published in the Advanced Materials journal.
The thesis claims that with the help of polymers, plastics, which are already manufactured on a large scale, it is possible to manufacture transistors that are fast and can run on small printed batteries, where the drive voltage is around 1 volt.
They are particularly suitable for printed electronics.
The transistor is made up of two polymers, one of which acts as a semiconductor and the other as an electrolyte; a substance containing mobile charged ions that controls the current flowing through the transistor.
Polymers consist of linked chains of molecules. Thanks to the fact that one type of charged particle in the electrolyte, be it positive or negative ions, binds to the polymer chain in the semiconducting polymer. The active layer, in which the electric field is concentrated in the electrolyte, becomes very thin (1 nanometre) irrespective of the thickness of the electrolyte layer.
Whether it is a negative or positive ion that binds depends on whether it is a transistor that is hole-conducting (p-channel) or if it is electron-conducting (n-channel).
The thin active layer permits the use of very low driving voltages. By combining p- and n-channel transistors, Lars Herlogsson has constructed complementary circuits, CMOS circuits, which reduces the power consumption.
"This is robust CMOS technology which allows for very low drive voltages, and besides that, it is well suited to printed electronics", he says.
To achieve these low drive voltages using conventional technology would require nanometre thin layers. Printing such thin layers is impossible because the printing surface on paper or plastic film is typically rough. However, printing a 100-nanometre thick layer, as in this case, is possible using conventional printing techniques.
The idea of creating a thin active layer also impressed electronics Professor Christer Svensson, now emeritus of the examining committee.
"A scientifically very neat job, an intelligent idea that he clearly showed works in reality. There may be applications for this type of electronics such as in large TV screens where silicon is unable to compete", Svensson says.
The focus of Lars Herlogssons thesis has been to produce a material system for polymer-based organic transistors that can be printed at a reasonable price. The result is a transistor that within traditional electronics is called a field-effect transistor. Four of the thesis articles are related to just that, but the other two articles are related to the following:
one addresses woven electronics where the organic electrolyte transistors are embedded in the intersections between textile microfibers.
The other shows how to produce an organic field-effect transistor with a drop of water as the electrolyte.
All of the six articles in the dissertation have been published in the prestigious scientific journal Advanced Materials.
Now, after spending years on research, Lars Herlogsson has taken a step closer to production. September 1, he began working at the company Thin Film Electronics in Linkoping to develop inexpensive printed memories.
"As scientists, our task is to push the boundaries and show what is practical and possible. Industry can produce the organic electronics better than we can and there are many talented plastic electronics companies, says Magnus Berggren, Professor of organic electronics at Linkoping University.
Thesis: Electrolyte-Gated Organic Thin-Film Transistors, Lars Herlogsson, Department of Science and Technology, Linköping University, Campus Norrköping, 2011
Full bibliographic information
A Water-Gate Organic Field-Effect Transistor by L. Kergoat, L. Herlogsson, D, Braga, B. Piro, M-C. Pham, X. Crispin, M. Berggren and G. Horowitz. Advanced Materials 2010, 22, 2265. DOI: 10.1002/adma.200904163
####
For more information, please click here
Contacts:
Åke Hjelm
+46-13281395
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |